Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transfer hydrogenation (TH) is a powerful synthetic tool in the production of secondary alcohols from ketones by using a non-H hydrogen source along with metal catalysts. Among homogeneous catalysts, Ru(II) complexes are the most efficient catalysts. In our research, six novel ruthenium(II) complexes bearing bipyridine-based ligands [Ru(L1)Cl] (1), [Ru(L1)(PPh)Cl]Cl (2) and [Ru(L2)Cl] (3) and N-heterocyclic carbene-supported pyridine (NCN) ligands [RuCp(L3)]PF (4), [RuCp*(L3)]PF (5), and [Ru(-cymene)(L3)Cl]PF (6) (where L1 = 6,6'-bis(aminomethyl)-2,2'-bipyridine, L2 = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine and L3 = 1,3-bis(2-methylpyridyl)imidazolium bromide) were synthesised and characterised by NMR spectroscopy, HRMS, and X-ray crystallography. The catalytic transfer hydrogenation of 28 ketones in 2-propanol at 80 °C in the presence of KOBu (5 mol%) was demonstrated and the effect of ligands is highlighted. The results show that catalyst 1 exhibits improved TH efficiency compared to the commercially available Milstein catalyst and displays higher catalytic activity than 2 due to the steric effect from PPh. From a combination of kinetic data and Eyring analysis, a zero-order dependence on the acetophenone substrate is observed, implying a rate-limiting hydride transfer step, leading to the proposed inner-sphere hydride transfer mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt03240b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!