Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique used to characterize fibrous structures such as white matter in the central nervous system, including normal and spinal cord injury (SCI) conditions. Our aim was to evaluate the effect of alginate treatment in the rat SCI by DTI parametric measures. Ex vivo DTI data were collected by spin echo sequence with following parameters TR/TE: 2500 ms/32 ms and b-value of 1500 s/mm2. Main significant changes were found in fractional anisotropy (FA), and radial diffusivity (RD), between the saline- and alginatetreated group at the level of individual sections and whole spinal cord. Results indicate that ex vivo DTI can be used as a tool for tissue structure characterisation and both FA and RD as promising prognostic parameters of SCI treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/gpb_2021030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!