Despite decades of technological advancements in blood-contacting medical devices, complications related to shear flow-induced blood trauma are still frequently observed in clinic. Blood trauma includes haemolysis, platelet activation, and degradation of High Molecular Weight von Willebrand Factor (HMW vWF) multimers, all of which are dependent on the exposure time and magnitude of shear stress. Specifically, accumulating evidence supports that when blood is exposed to shear stresses above a certain threshold, blood trauma ensues; however, it remains unclear how various constituents of blood are affected by discrete shears experimentally. The aim of this study was to expose blood to discrete shear stresses and evaluate blood trauma indices that reflect red cell, platelet, and vWF structure. Citrated human whole blood (n = 6) was collected and its haematocrit was adjusted to 30 ± 2% by adding either phosphate buffered saline (PBS) or polyvinylpyrrolidone (PVP). Viscosity of whole blood was adjusted to 3.0, 12.5, 22.5 and 37.5 mPa·s to yield stresses of 3, 6, 9, 12, 50, 90 and 150 Pa in a custom-developed shearing system. Blood samples were exposed to shear for 0, 300, 600 and 900 s. Haemolysis was measured using spectrophotometry, platelet activation using flow cytometry, and HMW vWF multimer degradation was quantified with gel electrophoresis and immunoblotting. For tolerance to 300, 600 and 900 s of exposure time, the critical threshold of haemolysis was reached after blood was exposed to 90 Pa for 600 s (P < 0.05), platelet activation and HMW vWF multimer degradation were 50 Pa for 600 s and 12 Pa for 300 s respectively (P < 0.05). Our experimental results provide simultaneous comparison of blood trauma indices and thus also the relation between shear duration and magnitude required to induce damage to red cells, platelets, and vWF. Our results also demonstrate that near-physiological shear stress (<12 Pa) is needed in order to completely avoid any form of blood trauma. Therefore, there is an urgent need to design low shear-flow medical devices in order to avoid blood trauma in this blood-contacting medical device field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2021.110898DOI Listing

Publication Analysis

Top Keywords

blood trauma
16
blood
11
von willebrand
8
willebrand factor
8
platelet activation
8
hmw vwf
8
exposure time
8
blood exposed
8
exposed shear
8
shear stresses
8

Similar Publications

parts of the world (1,2). CL is characterized by significant clinical variability. An ulcerated nodule on the exposed parts of the body (corresponding to the parasite inoculation site by the vector insect) is the classic presentation.

View Article and Find Full Text PDF

Erlotinib-induced Perioral Lesions Resembling Scleroderma.

Acta Dermatovenerol Croat

November 2024

Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;

Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.

View Article and Find Full Text PDF

Objective: The goal of a decompressive craniectomy (DC) or a hinge craniotomy (HC), is to treat intracranial hypertension and reduce mortality. Traditionally, the decompression procedure has been performed with cranial bone removal. However, decompression and repositioning the cranial bone, named HC, has been presented as an alternative for certain cases.

View Article and Find Full Text PDF

Background:  The aim of the study is to identify the potential risk factors for postoperative AKI in hip fracture patients.

Design And Methods:  Using our local neck of femur (NOF) registration data, patient details were selected using inclusion and exclusion criteria. Electronic records of patients were assessed retrospectively, including blood results, radiological investigations, clinical documentation, and drug charts.

View Article and Find Full Text PDF

Background: Road traffic injuries (RTIs) are currently the ninth most common cause of mortality and are expected to increase in the future. RTIs rank in the top three reasons why young people die. Because of the high incidence and mortality risk, proper trauma care has been prioritized for RTI patients who present to the emergency department.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!