Microbes are important component in terrestrial ecosystem, which are believed to play vital roles in biogeochemical cycles of metalloids in mining and smelting surroundings. Many studies on microbial diversity and structures have been investigated around mining and smelting sites, whereas the ecological processes and co-occurrence patterns that influence the biogeographic distributions of microbial communities is yet poorly understood. Herein, microbial biogeography, assembly mechanism and co-occurrence pattern around mining and smelting zone were systematically unraveled using 16S rRNA gene sequencing. The 66 microbial phyla co-occurring across all the samples were dominated by Proteobacteria, Chloroflexi, Acidobacteria and Crenarchaeota. Obvious distance-decay (r = 0.3448, p < 0.001) of microbial community was observed across geographic distances. Differences in microbial communities were driven by the joint impacts of soil factors, spatial and metalloids levels. Dispersal limitation dominated the microbial assemblies in whole, SC and GX sites while homogeneous selection governed that in YN site. The changes in pH and Sb level significantly influenced the deterministic and stochastic processes of microbial communities. Network analysis suggested a typical module distribution, which had apparent ecological links among taxa in modules. This study provides first insight of the mechanism to maintain microbial diversity in metalloids-laden biospheres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127945 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!