AI Article Synopsis

  • SARS-CoV-2 has been continuously evolving since late 2019, leading to the emergence of new variants and contributing to pandemic waves in countries like India.
  • * Researchers analyzed SARS-CoV-2 sequences from the GISAID database and identified a novel variant, B.1.1.526, characterized by 11 mutations, including D614G, P681H, and E484K, predominantly found in seven Indian states.
  • * The study highlights that specific mutations associated with this variant may enhance its transmissibility and infectivity, indicating potential implications for vaccine efficacy and public health responses.*

Article Abstract

Background: Since its inception in late 2019, SARS-CoV-2 has been evolving continuously by procuring mutations, leading to emergence of numerous variants, causing second wave of pandemic in many countries including India in 2021. To control this pandemic continuous mutational surveillance and genomic epidemiology of circulating strains is very important to unveil the emergence of the novel variants and also monitor the evolution of existing variants.

Methods: SARS-CoV-2 sequences were retrieved from GISAID database. Sequence alignment was performed with MAFT version 7. Phylogenetic tree was constructed by using MEGA (version X) and UShER.

Results: In this study, we reported the emergence of a novel variant of SARS-CoV-2, named B.1.1.526, in India. This novel variant encompasses 129 SARS-CoV-2 strains which are characterized by the presence of 11 coexisting mutations including D614G, P681H, and V1230L in S glycoprotein. Out of these 129 sequences, 27 sequences also harbored E484K mutation in S glycoprotein. Phylogenetic analysis revealed strains of this novel variant emerged from the GR clade and formed a new cluster. Geographical distribution showed, out of 129 sequences, 126 were found in seven different states of India. Rest 3 sequences were observed in USA. Temporal analysis revealed this novel variant was first collected from Kolkata district of West Bengal, India.

Conclusions: The D614G, P618H and E484K mutations have previously been reported to favor increased transmissibility, enhanced infectivity, and immune invasion, respectively. The transmembrane domain (TM) of S2 subunit anchors S glycoprotein to the virus envelope. The V1230L mutation, present within the TM domain of S glycoprotein, might strengthen the interaction of S glycoprotein with the viral envelope and increase S glycoprotein deposition to the virion, resulting in more infectious virion. Therefore, the new variant having D614G, P618H, V1230L, and E484K may have higher infectivity, transmissibility, and immune invasion characteristics, and thus need to be monitored closely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642833PMC
http://dx.doi.org/10.1016/j.jiph.2021.11.020DOI Listing

Publication Analysis

Top Keywords

novel variant
16
emergence novel
12
west bengal
8
129 sequences
8
analysis revealed
8
d614g p618h
8
immune invasion
8
glycoprotein
6
sars-cov-2
5
novel
5

Similar Publications

Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria.

View Article and Find Full Text PDF

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.

View Article and Find Full Text PDF

Objective: The effects of sex hormones remain largely unexplored in pheochromocytomas and paragangliomas (PPGLs) and gastroenteropancreatic neuroendocrine tumors (GEP-NETs).

Methods: We evaluated the effects of estradiol, progesterone, Dehydroepiandrosterone sulfate (DHEAS), and testosterone on human patient-derived PPGL/GEP-NET primary culture cell viability (n = 38/n = 12), performed next-generation sequencing and immunohistochemical hormone receptor analysis in patient-derived PPGL tumor tissues (n = 36).

Results: In PPGLs, estradiol and progesterone (1 µm) demonstrated overall significant antitumor effects with the strongest efficacy in PPGLs with NF1 (cluster 2) pathogenic variants.

View Article and Find Full Text PDF

Discovery of a 2'-α-Fluoro-2'-β--(fluoromethyl) Purine Nucleotide Prodrug as a Potential Oral Anti-SARS-CoV-2 Agent.

J Med Chem

January 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

A novel 2'-α-fluoro-2'-β--(fluoromethyl) purine nucleoside phosphoramidate prodrug has been designed and synthesized to treat SARS-CoV-2 infection. The SARS-CoV-2 central replication transcription complex (C-RTC, nsp12-nsp7-nsp8) catalyzed in vitro RNA synthesis was effectively inhibited by the corresponding bioactive nucleoside triphosphate (). The cryo-electron microscopy structure of the C-RTC: complex was also determined.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!