Human activities generate enormous amounts of organic wastes and residues. Filamentous fungi (FF) are able to grow on a broad range of substrates and survive over a wide spectrum of growth conditions. These characteristics enable FF to be exploited in biorefineries for various waste streams. Valorization of food industry byproducts into biomass and various arrays of value-added products using FF creates promising pathways toward a sustainable circular economy. This approach might also contribute to reaching the sustainable development goals set by the United Nations, particularly for zero hunger as well as affordable and clean energy. This paper presents the application of filamentous fungi in food, feeds, fuels, biochemicals, and biopolymers. The nutritional values, health benefits, and safety of foods derived from byproducts of food industries are also addressed. The technoeconomical feasibilities, sustainability aspects and challenges and future perspectives for biorefineries using filamentous fungi are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.126531DOI Listing

Publication Analysis

Top Keywords

filamentous fungi
16
sustainable circular
8
role filamentous
4
fungi
4
fungi advancing
4
advancing development
4
development sustainable
4
circular bioeconomy
4
bioeconomy human
4
human activities
4

Similar Publications

In Iran, there is limited information regarding the species distribution and antifungal susceptibility profiles of yeast isolates from drug addicts suffering from oral candidiasis (OC). In this study, 104 yeast isolates, including 98 Candida species and 6 uncommon yeasts, were collected from 71 drug abusers with OC. The susceptibility profiles of Candida spp.

View Article and Find Full Text PDF

Background: Rice is the main food crop for much of the population in China. Therefore, selecting and breeding new disease resistance and drought tolerance in rice is essential to ensure national food security. The utilization of heterosis has significantly enhanced rice productivity, yet many of the molecular mechanisms underlying this phenomenon remain largely unexplored.

View Article and Find Full Text PDF

Tobacco Fusarium root rot is caused by various Fusarium species, with eleven species reported, among which F. oxysporum and F. solani are main responsible in China (Yang et al.

View Article and Find Full Text PDF

Despite the increasing interest in developing antimethanogenic additives to reduce enteric methane (CH) emissions and the extensive research conducted over the last decades, the global livestock industry has a very limited number of antimethanogenic feed additives (AMFA) available that can deliver substantial reduction, and they have generally not reached the market yet. This work provides technical recommendations and guidelines for conducting tests intended to screen the potential to reduce, directly or indirectly, enteric CH of compounds before they can be further assessed in in vivo conditions. The steps involved in this work cover the discovery, isolation, and identification of compounds capable of affecting CH production by rumen microbes, followed by in vitro laboratory testing of potential candidates.

View Article and Find Full Text PDF

Aseptic process simulations (APS) are traditionally performed using Tryptic Soy Broth (TSB) as a surrogate for finished product to qualify aseptic manufacturing operations. In this study, the supernatant from cell processing media was examined for bacterial and fungal growth viability to determine equivalency with TSB. With the use of cell processing media in Cell and Gene Therapy (CGT) manufacturing, can qualifying the supernatant collected from the process eliminate the need for an APS run?Supernatant was collected from cell processing media and incubated at same incubations conditions required for the APS post sterility check (Test A - 7d 20-25°C/7d 30-35°C) and at use conditions (Test B - 14 d at 35°C/5%CO/5%O2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!