Immunization is the most effective way to respond to an influenza epidemic. To produce Vero cell-derived influenza vaccines, a more efficient, stable and economical purification process is required. In this study, we purified the H7N9 influenza virus grown in Vero cells that were cultured in a serum-free medium by using a combination of anion exchange chromatography (AEC) and ligand-activated core chromatography (LCC), which avoids the virus capture step. After purification, 99.95 % host cell DNA (hcDNA) (final concentration: 28.69 pg/dose) and 98.87 % host cell protein (HCP) (final concentration: 28.28 ng/dose) were removed. The albumin content was 11.36 ng/dose. All these remnants met the current Chinese Pharmacopoeia and WHO requirements. The final virus recovery rate was 58.74 %, with the concentration of hemagglutinin recorded at 132.12 μg/mL. The flow-through chromatography purification process represents an alternative to the existing processes for cell-derived influenza viruses and might be suitable for the purification of other viruses as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2021.114408 | DOI Listing |
Klin Mikrobiol Infekc Lek
March 2024
Department of Microbiology, Olomouc University Hospital, Czech Republic, e-mail:
Objectives: Staphylococcus aureus is part of the human microbiota, but at the same time, it is capable of causing a wide range of diseases. Due to the ever-increasing resistance to antimicrobial agents and the existence of methicillin-resistant S. aureus (MRSA) strains, there is a real possibility of carrying even this resistant bacterium, which can subsequently cause a severe infection.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFiScience
January 2025
Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
While various methods are employed to ensure the virus safety of finished products, virus filtration (VF) stands out as the preferred method for virus removal and purification of a wide variety of products owing to its capability of separating product molecules with more than 90% recovery and no change in molecule characteristics. The modeling of the virus removal process for VF membranes is based on the principles of microfiltration (MF) and ultrafiltration (UF), but with modifications for the much narrower separation difference, which is less than 2-fold for the separation of product molecules and virus particles. In this review, we introduce the materials and application of VF highlighting the unique characteristics properties of VF membranes through the steps of invention and subsequent development.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!