The use of probiotics, prebiotics and dietary fiber has become a common practice in shrimp aquaculture as alternatives to antibiotic treatment. However, not much is known about the metabolic mechanisms underlying the effects of probiotics and immunostimulant used in shrimp aquaculture. In this study, a gas chromatography-mass spectrometry (GC-MS) based metabolomics approach was used to characterize metabolite profiles of haemolymph and gills of whiteleg shrimp (Penaeus vannamei) exposed to four treatments (cellulose fiber, probiotics with Vibrio alginolyticus, a combination of cellulose fiber and V. alginolyticus and a control treatment). The cellulose fiber was administrated as a feed additive (100 mg⋅Kg feed), while the probiotics was applied in the water (10 UFC⋅mL culture water). The results showed significant differences in haemolymph metabolite profiles of immune stimulated treatments compared to the control and among treatments. The combination of cellulose fiber and probiotics resulted in greater differences in metabolic profiles, suggesting a better immune stimulation with this approach. The changes in haemolymph metabolome of treated shrimp reflected several biochemical pathway modifications, including changes in amino acid and fatty acid metabolism, disturbances in energy metabolism and antimicrobial activity and stress responses. For gill tissues, significant differences were only found in lactic acid between the probiotic group and the control. Among the altered metabolites, the increases of itaconic acid in haemolymph, and lactic acid in both haemolymph and gill tissues of immune-stimulated suggest the potential use of these metabolites as biomarkers for health assessment in aquaculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2021.12.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!