A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of the reverse osmosis membrane fouling behaviors of different types of water samples by modeling the flux change over time. | LitMetric

Comparison of the reverse osmosis membrane fouling behaviors of different types of water samples by modeling the flux change over time.

Chemosphere

Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China.

Published: February 2022

AI Article Synopsis

  • Fouling of reverse osmosis (RO) membranes is a significant issue in wastewater treatment, impacting efficiency and performance.
  • A modified blocking model was used in this study to assess how different types of water, such as municipal and industrial wastewater, affect membrane flux changes, achieving high reliability in predictions.
  • The findings revealed that treated industrial wastewater poses the greatest risk for fouling, while other water types showed lower fouling potential, indicating that real water samples behave differently from model organic solutions.

Article Abstract

Fouling of RO membranes has long been a complex but inevitable problem in wastewater reclamation. In this study, a modified intermediate blocking model with two parameters was applied to describe the flux change of RO membranes treating various water samples, including municipal secondary effluent, treated industrial wastewater, surface water, and groundwater. The model was validated by 55 sets of data reported by 13 articles, and the results were promising, with 90% of the determination coefficient (R) exceeding 0.90. Relatively large flux and high operational pressure were found likely to aggravate membrane fouling. Treated industrial wastewater had the highest fouling potential (fouling constant k: 0.061-2.433) compared to municipal wastewater secondary effluent, surface water, and groundwater, even with similar dissolved organic carbon concentration. With industrial wastewater excluded, water samples exhibited lower fouling potential than organic matter solutions, with the majority (25%∼75%) of k distributing in 0.03-0.12, much lower compared to the major k range of the latter (0.05-0.28). This suggested a deviation in fouling behaviors between model organic matters and real water samples. Xanthan gum and guar gum were proposed to be model polysaccharides based on their model parameters, which were relatively close to real water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.133217DOI Listing

Publication Analysis

Top Keywords

water samples
20
industrial wastewater
12
membrane fouling
8
fouling behaviors
8
flux change
8
model parameters
8
secondary effluent
8
treated industrial
8
surface water
8
water groundwater
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!