The exploration of the distribution and dietetic-related health risks of perfluoroalkyl acids (PFAAs) in industrial-agricultural interaction regions (IAIRs) is of significant importance, due to the transfer of many PFAA-related factories to developing countries with intensive agricultural activities. In the present study, based on the local diet, edible parts of rice, vegetables, fish, and their corresponding soils and irrigation/aquaculture water were investigated in a typical Chinese city (Changshu). The concentrations of total perfluoroalkyl acids (ΣPFAAs) in the edible parts of rice /vegetables and fish tissues ranged from 26.69 to 37.09 ng/g dw, 12.93 to 40.77 ng/g dw, and 13.27 to 29.82 ng/g ww, with perfluorohexanoic acid (PFPeA) and perfluorooctane sulfonic acid (PFOS) as the most dominant compounds. The PFAA concentrations in the corresponding rice soils, vegetable soils, irrigation water, and aquaculture water ranged from 11.99 to 26.33 ng/g dw, 14.06 to 36.19 ng/g dw, 141.36 to 297.00 ng/L, and 179.23 to 235.82 ng/L, respectively. Biota-sediment accumulation factor (BSAF) values for the plant-soil system were far greater than those for bioaccumulation factor (BAF) values for the plant-irrigation water system. PFAAs were more inclined to accumulate in the gills of fish as determined by their highest BAF values. Correlation analysis showed that PFAAs in root vegetables had a stronger correlation with those in soil compared with those in irrigation water. Source analysis showed that emissions from fluoride industries, textiles, and food industries may be the dominant sources of PFAAs in agricultural environments. The estimated dietary intake (EDI) for the selected diet was lower than that for rice/vegetables but was higher than that found in fish. Toddlers (2-5 years) had the highest exposure risk, and rural residents were more exposed to PFAAs than urban residents under the selected diet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.152159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!