Failure load of milled, 3D-printed, and conventional chairside-dispensed interim 3-unit fixed dental prostheses.

J Prosthet Dent

Professor, Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tenn. Electronic address:

Published: February 2022

Statement Of Problem: New techniques and materials for the laboratory fabrication of interim fixed dental prostheses have gained in popularity, yet how their failure strengths compare with conventional chairside materials is unclear.

Purpose: The purpose of this in vitro study was to compare the strength of computer-aided design and computer-aided manufacturing (CAD-CAM) milled polymethylmethacrylate (PMMA) or 3-dimensionally (3D) printed bis-acryl interim fixed dental prostheses with a traditional chairside-dispensed autopolymerizing bis-acryl prosthesis while taking into account the effect of loading rate and storage time.

Material And Methods: A dentiform mandibular second premolar and second molar with a first molar pontic were prepared and scanned. Three groups of 3-unit interim fixed dental prostheses were fabricated: milled PMMA, 3D-printed bis-acryl, and chairside-dispensed autopolymerizing bis-acryl. The interim prostheses were evaluated for fit with a silicone disclosing material and cemented onto 3D-printed resin dies. The specimens were stored in 100% humidity at 37 °C. After 1 or 30 days of storage, the cemented interim prostheses were loaded to failure in a universal testing machine at 1 or 10 mm/min (n=15/group). Failure loads were analyzed by 3-way analysis of variance and multiple comparisons (α=.05).

Results: Mean ±standard deviation failure loads ranged from 363 ±93 N (3D-printed bis-acryl, 30 days, 1 mm/min) to 729 ±113 N (milled PMMA, 24 hours, 1 mm/min). Loading rate did not significantly affect failure load of the interim prostheses (P=.306). After 30 days of storage in 100% humidity, the failure load of milled PMMA and 3D-printed bis-acryl interim prostheses decreased significantly, but the chairside autopolymerizing bis-acryl prostheses were not affected. After 30 days of storage, the failure loads of milled PMMA and chairside autopolymerizing bis-acryl were not significantly different.

Conclusions: Regardless of loading rate, interim fixed dental prostheses from milled PMMA had the highest initial strength 1 day after storage. Thirty days of exposure to humidity, however, reduced the strength of the CAD-CAM-manufactured interim prostheses, whereas the traditional chairside prostheses retained their strength.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2021.11.005DOI Listing

Publication Analysis

Top Keywords

fixed dental
20
dental prostheses
20
milled pmma
20
interim prostheses
20
interim fixed
16
autopolymerizing bis-acryl
16
failure load
12
prostheses
12
bis-acryl interim
12
loading rate
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!