Health consequences of exposure to e-waste: an updated systematic review.

Lancet Planet Health

Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia. Electronic address:

Published: December 2021

Electronic waste (e-waste) contains numerous chemicals harmful to human and ecological health. To update a 2013 review assessing adverse human health consequences of exposure to e-waste, we systematically reviewed studies reporting effects on humans related to e-waste exposure. We searched EMBASE, PsycNET, Web of Science, CINAHL, and PubMed for articles published between Dec 18, 2012, and Jan 28, 2020, restricting our search to publications in English. Of the 5645 records identified, we included 70 studies that met the preset criteria. People living in e-waste exposed regions had significantly elevated levels of heavy metals and persistent organic pollutants. Children and pregnant women were especially susceptible during the critical periods of exposure that detrimentally affect diverse biological systems and organs. Elevated toxic chemicals negatively impact on neonatal growth indices and hormone level alterations in e-waste exposed populations. We recorded possible connections between chronic exposure to e-waste and DNA lesions, telomere attrition, inhibited vaccine responsiveness, elevated oxidative stress, and altered immune function. The existence of various toxic chemicals in e-waste recycling areas impose plausible adverse health outcomes. Novel cost-effective methods for safe recycling operations need to be employed in e-waste sites to ensure the health and safety of vulnerable populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674120PMC
http://dx.doi.org/10.1016/S2542-5196(21)00263-1DOI Listing

Publication Analysis

Top Keywords

exposure e-waste
12
e-waste
9
health consequences
8
consequences exposure
8
e-waste exposed
8
toxic chemicals
8
health
5
exposure
5
e-waste updated
4
updated systematic
4

Similar Publications

E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.

View Article and Find Full Text PDF

Comprehensive Blood Metabolome and Exposome Analysis, Annotation, and Interpretation in E-Waste Workers.

Metabolites

December 2024

Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.

Electronic and electrical waste (e-waste) production has emerged to be of global environmental public health concern. E-waste workers, who are frequently exposed to hazardous chemicals through occupational activities, face considerable health risks. To investigate the metabolic and exposomic changes in these workers, we analyzed whole blood samples from 100 male e-waste workers and 49 controls from the GEOHealth II project (2017-2018 in Accra, Ghana) using LC-MS/MS.

View Article and Find Full Text PDF

Electronic waste (e-waste) dismantling and dumpsite processes are recognized as significant sources of chlorinated paraffin (CP) exposure. This study aims to investigate the environmental occurrence and distribution of polychlorinated alkanes (PCAs-C), specifically in soil and outdoor dust samples collected from e-waste dumpsites and automobile dismantling and resale sites in Nigeria. The results revealed a widespread occurrence of PCAs across all sampled locations.

View Article and Find Full Text PDF

Novel flame retardants (NFRs) in e-waste: Environmental burdens, health implications, and recommendations for safety assessment and sustainable management.

Toxicology

December 2024

Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.

Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood.

View Article and Find Full Text PDF

Currently, the adverse effects of carcinogenic primary aromatic amines (PAAs) released from electronic waste (e-waste) dismantling activities on human health remain unclear. Therefore, this study examined the urinary concentrations of 28 PAAs in residents living in both e-waste dismantling and control areas, and the median concentrations (unit: μg/g Cre) of aniline (ANI) (1.06 vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!