Increased protein synthesis supports the rapid cell proliferation associated with cancer. The mutant mouse reduces the expression of the ribosomal protein RPL24 and has been used to suppress translation and limit tumorigenesis in multiple mouse models of cancer. Here, we show that also suppresses tumorigenesis and proliferation in a model of colorectal cancer (CRC) with two common patient mutations, and . In contrast to previous reports, mutation has no effect on ribosomal subunit abundance but suppresses translation elongation through phosphorylation of eEF2, reducing protein synthesis by 40% in tumour cells. Ablating eEF2 phosphorylation in mutant mice by inactivating its kinase, eEF2K, completely restores the rates of elongation and protein synthesis. Furthermore, eEF2K activity is required for the mutant to suppress tumorigenesis. This work demonstrates that elevation of eEF2 phosphorylation is an effective means to suppress colorectal tumorigenesis with two driver mutations. This positions translation elongation as a therapeutic target in CRC, as well as in other cancers where the mutation has a tumour suppressive effect in mouse models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668188PMC
http://dx.doi.org/10.7554/eLife.69729DOI Listing

Publication Analysis

Top Keywords

eef2 phosphorylation
12
protein synthesis
12
colorectal cancer
8
mouse models
8
translation elongation
8
mutation suppresses
4
suppresses colorectal
4
cancer
4
cancer promoting
4
eef2
4

Similar Publications

Previous research suggests mitochondrial apoptosis alleviates rheumatoid arthritis (RA), but the role of mitochondrial apoptosis-related genes (MARGs) is unclear. Urgent exploration of RA-related mitochondrial apoptosis biomarkers is needed. Gene Expression Ontology (GEO)-derived RA datasets were used to identify differentially expressed genes (DEGs) compared to normal controls, intersected with MARGs to obtain differentially expressed mitochondrial apoptosis-related genes (DE-MARGs).

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.

View Article and Find Full Text PDF

Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Identification and validation of ATP6V1G1-regulated phosphorylated proteins in hepatocellular carcinoma.

PLoS One

December 2024

Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education Nanning, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.

V-ATPase Subunit G1 (ATP6V1G1) is one of the subunits of Vacuolar ATPases. Previous studies have indicated that ATP6V1G1 plays important roles in hepatocellular carcinoma (HCC) and is associated with HCC progression. However, the effect of ATP6V1G1 in HCC requires further elucidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!