Valproic acid (VPA) is an antiepileptic, bipolar, and migraine medication, which is associated with embryonic dysmorphology, more specifically neural tube defects (NTDs), if taken while pregnant. One mechanism by which VPA may cause NTDs is through oxidative stress that cause disruption of cell signaling. However, mechanisms of VPA-induced oxidative stress are not fully understood. Since VPA is a deacetylase inhibitor, we propose that VPA promotes mitochondrial superoxide dismutase-2 (SOD2) acetylation, decreasing SOD2 activity and increasing oxidant levels. Using the pluripotent embryonal carcinoma cell line, P19, VPA effects were evaluated in undifferentiated and neurodifferentiated cells. VPA treatments increased oxidant levels, oxidized the glutathione (GSH)/glutathione disulfide (GSSG) redox couple, and decreased total SOD and SOD2 activity in undifferentiated P19 cells but not in differentiated P19 cells. VPA caused a specific increase in mitochondrial oxidants in undifferentiated P19 cells, VPA did not alter respirometry measurements. Immunoblot analyses demonstrated that VPA increased acetylation of SOD2 at lysine (AcK68 SOD2) in undifferentiated P19 cells but not in differentiated P19 cells. Pretreatments with the Nrf2 inducer, dithiol-3-thione (D3T), in undifferentiated P19 cells prevented increased oxidant levels, GSH/GSSG redox oxidation and restored total SOD and SOD2 activity, correlating with a decrease in AcK68 SOD2 levels. In embryos, VPA decreased total SOD and SOD2 activity and increased levels of AcK68 SOD2, and D3T pretreatments prevented VPA effects, increasing total SOD and SOD2 activity and lowering levels of AcK68 SOD2. These data demonstrate a potential, contributing oxidizing mechanism by which VPA incites teratogenesis in developing systems. Moreover, these data also suggest that Nrf2 interventions may serve as a means to protect developmental signaling and inhibit VPA-induced malformations.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10715762.2021.2017913DOI Listing

Publication Analysis

Top Keywords

p19 cells
24
sod2 activity
20
total sod
16
sod sod2
16
undifferentiated p19
16
ack68 sod2
16
sod2
12
oxidative stress
12
vpa
12
oxidant levels
12

Similar Publications

Background/objective: The Rs1 exon-1-del rat (Rs1KO) XLRS model shows normal retinal development until postnatal day 12 (P12) when small cystic spaces start to form in the inner nuclear layer. These spaces enlarge rapidly, peak at P15, and then collapse by P19.

Methods: We explored the possible involvement of Kir4.

View Article and Find Full Text PDF

Amniotic fluid (AF)-derived exosomal miRNA have been explored as potential contributors to the pathogenesis of Tetralogy of Fallot (TOF). This study aimed to investigate the expression profiles of AF-derived exosomal miRNAs and their potential contribution to TOF development. Exosomes were isolated from AF samples obtained from pregnant women carrying fetuses diagnosed with TOF.

View Article and Find Full Text PDF

Aims: Sacubitril/valsartan (Sac/Val) is used for treatment of heart failure. The effect of Sac/Val on regional dysfunction following myocardial infarction (MI) remains uncertain. This study aimed at understanding the effects of Sac/Val on regional function after MI.

View Article and Find Full Text PDF

Examining the NEUROG2-lineage and associated-gene expression in human cortical organoids.

Development

December 2024

Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.

Proneural genes are conserved drivers of neurogenesis across the animal kingdom. How their functions have adapted to guide human-specific neurodevelopmental features is poorly understood. Here, we mined transcriptomic data from human fetal cortices and generated from human embryonic stem cell (hESC)-derived cortical organoids (COs) to show that NEUROG1 and NEUROG2 are most highly expressed in basal neural progenitor cells, with pseudotime trajectory analyses indicating that NEUROG1-derived lineages predominate early and NEUROG2 lineages later.

View Article and Find Full Text PDF

Background: Bovine leukaemia virus (BLV)-infected Holstein cattle carrying certain bovine leukocyte antigen (BoLA)-DRB3 alleles were previously shown to be resistant to BLV provirus multiplication, while those carrying other alleles were susceptible. This study aimed to determine whether the BoLA-DRB3 alleles carried by BLV-infected cattle could predict proviral load (PVL) and peripheral blood lymphocyte (PBL) count distribution (PVL/PBL distribution).

Methods: Blood samples from Holstein cattle on four dairy farms were tested for the presence of BLV antibodies using a commercial ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!