In this study, the wetting and dewetting behaviors of water nanodroplets containing various molecule numbers on nanopillar-arrayed surfaces in the presence or absence of an external electric field are investigated via molecular dynamics (MD) simulations, aiming to examine whether there is a scale effect. The results show that, in the absence of an electric field, nanodroplets on coexisting Cassie/Wenzel surfaces may be in the Cassie or the Wenzel state depending on their initial states, and apparent contact angles of the Cassie or Wenzel nanodroplets increase monotonously with increasing the droplet size. Energy analysis shows that on the same coexisting Cassie/Wenzel surface, when an electric field is imposed, a small nanodroplet possesses a lower energy barrier separating the Cassie state from the Wenzel state. Therefore, the small nanodroplet is easier to collapse into the Wenzel state. Moreover, the spontaneous Wenzel-to-Cassie dewetting transition is not observed for the nanodroplets after the removal of the electric field because the Wenzel state is a globally stable energetic state. With the same pillar geometry, both the wetting transition and the dewetting transition are significantly modified for liquids with higher intrinsic contact angles. The energy barrier of the wetting transition increases for both the large and small nanodroplets, meaning that the Cassie state becomes more robust. The energy curve shows that the Wenzel state of the large nanodroplet has higher energy so that the droplet can return to the Cassie state when removing the electric field. Intriguingly, although the small Wenzel nanodroplet has lower energy in the presence of the electric field, the dewetting transition still occurs. The increased solid-liquid interfacial tension when removing the electric field is responsible for this abnormal result. The wetting and dewetting transitions follow different energy pathways, leading to a hysteresis energy loop. There exists a critical water molecule number separating the unstable/stable Wenzel configurations, above which the Cassie state is energetically favorable and the dewetting transition can occur spontaneously after removing the electric field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01807 | DOI Listing |
Light Sci Appl
January 2025
Zhangjiang Laboratory, Shanghai, 201204, China.
Boasting superior flexibility in beam manipulation and a simpler framework than traditional phased arrays, terahertz metasurface-based phased arrays show great promise for 5G-A/6G communication networks. Compared with the reflective reconfigurable intelligent surface (reflective RIS), the transmissive RIS (TRIS) offers more feasibility for transceiver multiplexing systems to meet the growing demand for high-performance beam tracking in terahertz communication and radar systems. However, the terahertz TRIS encounters greater challenges in phase shift, beam efficiency, and complex circuitry.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Aalto University, Department of Electronics and Nanoengineering, Espoo, Finland.
Even though efficient near-infrared (NIR) detection is critical for numerous applications, state-of-the-art NIR detectors either suffer from limited capability of detecting incoming photons, i.e., have poor spectral responsivity, or are made of expensive group III-V non-CMOS compatible materials.
View Article and Find Full Text PDFEnviron Int
December 2024
Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), Rome, Italy(2).
Int J Biol Macromol
December 2024
Integrated Transformation and Renewable Matter TIMR (UTC/ESCOM), University of Technology of Compiegne- Alliance Sorbonne University, Centre of Research of Royallieu, Rue du docteur Schweitzer, CS 60319, 60203 Compiegne, France. Electronic address:
Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods.
View Article and Find Full Text PDFBrain Res Bull
December 2024
Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China. Electronic address:
Post traumatic stress disorder (PTSD) is characterized by anxiety, excessive fear, distress, and weakness as symptoms of a psychiatric disorder. However, the mechanism associated with its symptoms such as anxiety-like behaviors is not well understood. It is aimed to investigate the underlying mechanisms of the medial septum (MS)-medial habenula (MHb) neural circuit modulating the anxiety-like behaviors of PTSD mice through in vivo fiber photometry recording, optogenetics, behavioral testing by open-field and elevated plus maze, fluorescent gold retrograde tracer technology, and viral tracer technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!