A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Beyond hydrophilic polymers in amphiphilic polymer-based self-assembled NanoCarriers: Small hydrophilic carboxylate-capped disulfide drug delivery system and its multifunctionality and multispatial targetability. | LitMetric

AI Article Synopsis

  • This study explores the use of small hydrophilic molecule-stabilized nanoparticles (MSPCL-NP) as an alternative to traditional hydrophilic polymers for safer and more effective drug delivery within cells.
  • The nanoparticles are designed to target specific cellular environments, responding to acidic conditions and levels of glutathione (GSH) to improve drug release and interaction with tissues.
  • When loaded with the chemotherapy drug doxorubicin, these nanoparticles demonstrated significant effectiveness in killing cancer cells in vitro and reducing tumor growth in mice.

Article Abstract

Due to increasing safety and intracellular delivery concerns about hydrophilic polymers in amphiphilic polymer-based nanoparticles (NPs), this study investigates small hydrophilic molecule-stabilized NPs for effective intracellular delivery with multiorganelle targetability and dual responsiveness to acidic pH/glutathione (GSH). In the construction of small hydrophilic molecule-stabilized NP (MSPCL-NP), the A-B-A-type amphiphilic polymer (MSPCL-P) is composed of two short hydrophilic carboxylate-capped disulfide derivatives (A) that replace hydrophilic polymers and assist in providing colloidal stability and preventing antibody (e.g., at least anti-PEG antibody)-mediated specific interactions and complement activation in the plasma and a hydrophobic multiple disulfide-containing poly(ε-caprolactone) block (B) that carries hydrophobic drugs. The carboxylates on the surface of MSPCL-NP target the acidic extratumoral/endolysosomal milieu by sensing and buffering acidic pH values, and the hydrophobic carboxylic acids improve adsorptive endocytosis and effective endosomal escape. Multiple disulfide linkages selectively target cytosolic GSH, resulting in rapid drug release from the destroyed MSPCL-NP via the cleavage of disulfide bonds in MSPCL-P. Doxorubicin (DOX)-loaded NP (DOX@MSPCL-NP) exerts strong effects on killing cells in vitro and inhibits tumor growth in HCT116 xenograft tumor-bearing mice. In conclusion, the multifunctionality and multispatial targetability of MSPCL-NP might effectively overcome various sequential drug delivery hurdles, ranging from blood circulation to drug release. Furthermore, the introduction of small hydrophilic molecules represents a potential strategy to make self-assembled NPs without the use of hydrophilic polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2021.121307DOI Listing

Publication Analysis

Top Keywords

hydrophilic polymers
16
small hydrophilic
16
hydrophilic
9
polymers amphiphilic
8
amphiphilic polymer-based
8
hydrophilic carboxylate-capped
8
carboxylate-capped disulfide
8
drug delivery
8
multifunctionality multispatial
8
multispatial targetability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: