L-tryptophan functionalized AgNPs were successfully fabricated using a one-pot synthesis method and assessed as a colorimetric probe for rapid and accurate determination of Mg ions. The developed sensor showed a selective response towards Mg with no interference from Ca in the wide concentration range of 1-200 µM. The sensor's response was optimized in the pH range of 9-10, which can be attributed to the protonation of amine groups and their interaction with Mg ions. The stability and selectivity of the sensor were examined in different salt (NaCl) and other metal ions, respectively. The L-tryptophan-AgNPs sensor detected Mg with the limit of detection of 3 µM, which is way lower than the concentration range of magnesium in human serum (0.75-1.05 mM). The recovery values of the developed sensor were in the range of 96-102% for the determination of Mg in urine samples. The obtained performances proved the potential application of the developed sensor for clinical diagnostic of Mg ions where an accurate and rapid response is needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.120692 | DOI Listing |
Heliyon
January 2025
Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain.
Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.
View Article and Find Full Text PDFJ Pharm Anal
October 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO) and Ferrosoferric oxide (FeO) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO or FeO nanoparticles alone.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
The spectral reflectance provides valuable information regarding vegetation growth and plays an important role in agriculture, forestry, and grassland management. In this study, a small, portable vegetation canopy reflectance (VCR) sensor that can operate throughout the day was developed. The sensor includes two optical bands at 710 nm and 870 nm, with the light separated by filters, and has a field of view of 28°.
View Article and Find Full Text PDFFront Digit Health
January 2025
Khoury College of Computer Sciences and Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States.
Smartphones and wearable sensors offer an unprecedented ability to collect peripheral psychophysiological signals across diverse timescales, settings, populations, and modalities. However, open-source software development has yet to keep pace with rapid advancements in hardware technology and availability, creating an analytical barrier that limits the scientific usefulness of acquired data. We propose a community-driven, open-source peripheral psychophysiological signal pre-processing and analysis software framework that could advance biobehavioral health by enabling more robust, transparent, and reproducible inferences involving autonomic nervous system data.
View Article and Find Full Text PDFThis study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!