The effect of the composition of electrolytes on capillary IEF is assessed for systems with carrier ampholytes covering two pH units and with catholytes of decreased pH, anolytes of increased pH, and both electrode solutions with adjusted pH values. For electrolytes composed of formic acid as anolyte and ammonium hydroxide as catholyte, simulation is demonstrated to provide the expected IEF system in which analytes with pI values within the formed pH gradient are focused and become immobile. Addition of formic acid to the catholyte results in the formation of an isotachophoretic zone structure that migrates toward the cathode. With ammonium hydroxide added to the anolyte migration occurs toward the anode. In the two cases, all carrier components and amphoteric analytes migrate isotachophoretically as cations or anions, respectively. The data reveal that millimolar amounts of a counter ion are sufficient to convert an IEF pattern into an ITP system. With increasing amounts of the added counter ion, the overall length of the migrating zone structure shrinks, the range of the pH gradient changes, and the migration rate increases. The studied examples indicate that systems of this type reported in the literature should be classified as ITP and not IEF. When both electrolytes are titrated, a non-uniform background electrolyte composed of formic acid and ammonium hydroxide is established in which analytes migrate according to local pH and conductivity without forming IEF or ITP zone structures. Simulation data are in qualitative agreement with previously published experimental data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9306543PMC
http://dx.doi.org/10.1002/elps.202100367DOI Listing

Publication Analysis

Top Keywords

formic acid
12
ammonium hydroxide
12
electrolytes capillary
8
composed formic
8
zone structure
8
analytes migrate
8
amounts counter
8
counter ion
8
ief
5
adjusted electrolytes
4

Similar Publications

Background: Rubber latex processing acid poisoning is a frequently encountered phenomenon in Tripura. Formic acid is the preferred choice for coagulating rubber latex in rubber sheet manufacturing units. The objective of this study aimed to assess the epidemiological profile of poisoning deaths by rubber processing acid and to record their autopsy findings.

View Article and Find Full Text PDF

The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass.

View Article and Find Full Text PDF

Nitrate-Photolysis Shortens the Lifetimes of Brown Carbon Tracers from Biomass Burning.

Environ Sci Technol

December 2024

State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.

Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.

View Article and Find Full Text PDF

WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.

View Article and Find Full Text PDF

Chlorinated coumarins, which are as cytotoxic as highly toxic halobenzoquinones toward CHO-K1 cells, have recently been identified as disinfection byproducts in drinking water disinfection processes. Therefore, detecting coumarins in water samples collected at various stages from drinking water treatment plants helps assess the formation of chlorinated coumarins in drinking water. Hence, a simple, rapid, accurate, and sensitive method for quantifying coumarins in water samples is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!