Diabetic nephropathy (DN) is a diabetic complication that can cause renal failure. β-amyrin has been identified to possess anti-diabetic property. This study was designed to evaluate the potential role of β-amyrin in DN and its underlying mechanism. Streptozotocin-induced diabetic mice were used as the in vivo model, and high glucose (HG)-stimulated human proximal tubular HK-2 cells were utilized as the in vitro model. Renal histological changes in mice were assessed by hematoxylin-eosin and periodic acid-Schiff staining. HK-2 cell viability and apoptosis were detected by Cell Counting Kit-8 assay and flow cytometry analysis, respectively. β-amyrin was found to ameliorate kidney injury in DN mice and suppressed inflammatory response as well as apoptosis of HG-stimulated HK-2 cells. miR-181-5p expression in murine renal tissues and HK-2 cells was detected by in situ hybridization (ISH) and fluorescence in situ hybridization (FISH). MiR-181b-5p, a previously identified target for diabetic kidney disease, was downregulated in renal tissues and HG stimulated HK-2 cells, and β-amyrin induced the upregulation of miR-181b-5p. Binding relationship between miR-181b-5p and high mobility group box 2 (HMGB2) was confirmed by luciferase reporter assay. MiR-181b-5p bound to 3' untranslated region of HMGB2 to suppress its expression. As shown by immunohistochemical staining and immunofluorescence staining, HMGB2 was upregulated in the in vivo and in vitro models of DN, and β-amyrin induced the downregulation of HMGB2. Moreover, HMGB2 overexpression neutralized the suppressive effects of miR-181b-5p elevation on the inflammatory response and apoptosis of HG-treated HK-2 cells. Overall, β-amyrin ameliorates DN in mice and suppresses inflammatory response and apoptosis of HG-stimulated HK-2 cells via the miR-181b-5p/HMGB2 axis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23431DOI Listing

Publication Analysis

Top Keywords

hk-2 cells
28
inflammatory response
12
β-amyrin ameliorates
8
diabetic nephropathy
8
mir-181b-5p/hmgb2 axis
8
hk-2
8
apoptosis hg-stimulated
8
hg-stimulated hk-2
8
renal tissues
8
situ hybridization
8

Similar Publications

In our research, we constructed models of renal ischemia-reperfusion (I/R)-exposed acute kidney injury (AKI) and unilateral ureteral obstruction (UUO)-stimulated renal fibrosis (RF) in C57BL/6 mice and HK-2 cells. We firstly authenticated that oral pinocembrin (PIN) administration obviously mitigated tissue damage and renal dysfunction induced by I/R injury, and PIN attenuated UUO-caused RF, as confirmed by the reduced expression of fibrotic markers as well as hematoxylin-eosin (H&E), Sirius red, immunohistochemistry, and Masson staining. Meanwhile, the beneficial role of PIN was again demonstrated in HK-2 cells with hypoxia-reoxygenation (H/R) or transforming growth factor beta-1 (TGF-β1) treatment.

View Article and Find Full Text PDF

Introduction: The pathogenesis of renal fibrosis is related to blood stasis, and the method of promoting blood circulation and removing blood stasis is often used as the treatment principle. Danshen injection (DSI) is a commonly used drug for promoting blood circulation and removing blood stasis in clinic. However, whether DSI slows the progression of renal fibrosis or the potential mechanism is uncertain.

View Article and Find Full Text PDF

Background: Renal fibrosis is crucial in the progression of chronic kidney disease (CKD) to end-stage renal failure. Geniposide, an iridoid glycoside, has shown therapeutic potential in acute kidney injury, diabetic nephropathy, and atherosclerosis. The aim of this study was to investigate the role of geniposide in renal fibrosis and its underlying mechanisms.

View Article and Find Full Text PDF

Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI.

View Article and Find Full Text PDF

Neddylation is a process of attaching neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to substrates for the protein function modulation via enzymatic cascades involving NEDD8-activating enzyme (E1), NEDD8-conjugating enzyme (E2), and NEDD8 ligase (E3). Defective in cullin neddylation 1 (DCN1) serves as a co-E3 ligase, that can simultaneously bind E2 UBE2M and cullin proteins to stabilize the catalytic center of the Cullin-Ring E3 ligase (CRL) complex, thereby promoting cullin neddylation. Neddylation is reported to be activated in diverse human diseases, and inhibition of protein neddylation has been regarded as a promising anticancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!