The response rate of topotecan, as a second-line chemotherapeutic drug for small cell lung cancer, is ~20%. DNA/RNA helicase SLFN11 (schlafen family member 11), a member of the Schlafen (SLFN) family, is a crucial determinant of response to many DNA damaging agents, expression of SLFN11 tends to augment the antitumor effects of the commonly used DNA-targeting agents. In the present study we investigated how SLFN11 expression regulated the sensitivity of small cell lung cancer to topotecan. We showed that SLFN11 expression levels were positively associated with the sensitivity to topotecan in a panel of seven SCLC cell lines. Topotecan treatment induced different patterns of the DNA response network in SCLC cells: DNA damage response (DDR) was more prominently activated in SLFN11-deficient SCLC cell line H82 than in SLFN11-plentiful SCLC cell line DMS273, whereas topotecan induced significant accumulation of p-Chk1, p-RPA2 and Rad51 in H82 cells, but not in DMS273 cells. We unraveled that SLFN11 expression was highly negatively correlated to the methylation of the SLFN11 promoter. HDAC inhibitors FK228 and SAHA dose-dependently increased SLFN11 expression through suppressing DNA methylation at the SLFN11 promoter, thereby sensitizing SCLC cells to topotecan. Finally, we assessed the methylation status of the SLFN11 promoter in 27 SCLC clinical specimens, and found that most of the clinical samples (24/27) showed DNA methylation at the SLFN11 promoter. In conclusion, it is feasible to combine topotecan with FK228 to improve the response rate of topotecan in SCLC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9343610 | PMC |
http://dx.doi.org/10.1038/s41401-021-00817-y | DOI Listing |
DNA-damaging agents (DDAs) have long been used in cancer therapy. However, the precise mechanisms by which DDAs induce cell death are not fully understood and drug resistance remains a major clinical challenge. Schlafen 11 (SLFN11) was identified as the gene most strongly correlated with the sensitivity to DDAs based on mRNA expression levels.
View Article and Find Full Text PDFHum Pathol
January 2025
Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland.
Colorectal carcinoma brain metastases (n=60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.
View Article and Find Full Text PDFThorac Cancer
January 2025
Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan.
Background: Schlafen 11 (SLFN-11) has been identified as a sensitizer of tumor cells to DNA-damaging agents. However, the relationship between SLFN-11 expression and clinical outcomes in patients with small cell lung cancer (SCLC) remains unexplored. Thus, we aimed to evaluate the impact of SLFN-11 expression on survival in patients with limited-stage (LS) SCLC.
View Article and Find Full Text PDFPediatr Blood Cancer
January 2025
Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan.
Introduction: Leptomeningeal disease (LMD) in diffuse midline gliomas (DMGs) can lead to devastating symptoms such as severe pain, urinary incontinence, and tetraparesis, with limited treatment options. We determined whether detecting H3F3A K27M-mutant droplets in cerebrospinal fluid (CSF) circulating tumor deoxyribonucleic acid (ctDNA) could be a biomarker for detecting LMD in DMGs.
Methods: Twenty-five CSF samples were obtained from 22 DMG patients.
Biomark Res
November 2024
Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria.
Background: Metastatic prostate cancer is a highly heterogeneous and dynamic disease and practicable tools for patient stratification and resistance monitoring are urgently needed. Liquid biopsy analysis of circulating tumor cells (CTCs) and circulating tumor DNA are promising, however, comprehensive testing is essential due to diverse mechanisms of resistance. Previously, we demonstrated the utility of mRNA-based in situ padlock probe hybridization for characterizing CTCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!