Treatments that require the introduction of external gas into the non-invasive ventilation (NIV) circuit, such as aerosol and oxygen therapy, may influence the performance of the ventilator trigger system. The aim of the study was to determine the presence and type of asynchronies induced by external gas in the NIV circuit in a bench model and in a group of patients undergoing chronic NIV. Bench study: Four ventilators (one with two different trigger design types) and three gas sources (continuous flow at 4 and 9 l/min and pulsatile flow at 9 l/min) were selected in an active simulator model. The sensitivity of the trigger, the gas introduction position, the ventilatory pattern and the level of effort were also modified. The same ventilators and gas conditions were used in patients undergoing chronic NIV. Bench: the introduction of external gas caused asynchronies in 35.9% of cases (autotriggering 73%, ineffective effort 27%). Significant differences (p < 0.01) were detected according to the ventilator model and the gas source. In seven patients, the introduction of external gas induced asynchrony in 20.4% of situations (77% autotriggering). As in the bench study, there were differences in the occurrence of asynchronies depending on the ventilator model and gas source used. The introduction of external gas produces alterations in the ventilator trigger. These alterations are variable, and depend on the ventilator design and gas source. This phenomenon makes it advisable to monitor the patient at the start of treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664954PMC
http://dx.doi.org/10.1038/s41598-021-03291-yDOI Listing

Publication Analysis

Top Keywords

external gas
16
introduction external
12
asynchronies induced
8
gas non-invasive
8
niv circuit
8
patients undergoing
8
undergoing chronic
8
chronic niv
8
niv bench
8
flow 9 l/min
8

Similar Publications

Nanogenerators for gas sensing applications.

Front Chem

January 2025

Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China.

Gas sensors are now widely employed in many industries due to the rapid speed of industrialization and the growth of the Internet of Things. However, the wearability and mobility of traditional gas sensors are limited by their high reliance on external power sources. Nanogenerators (NGs) can compensate for their power source limitations when paired with gas sensors by transforming the environment's widely dispersed low-frequency energy into electrical energy, allowing for self-powered gas detection.

View Article and Find Full Text PDF

Background: Open pelvic fractures are rare but represent a serious clinical problem with high mortality rates. Acute mortality is often associated with hemorrhage, whereas delayed mortality is most often associated with sepsis and multiple organ failure. We report a case of Wang's classification of type II open pelvic ring fracture with hemorrhagic shock and septic shock from gas gangrene.

View Article and Find Full Text PDF

Negative gas adsorption transitions and pressure amplification phenomena in porous frameworks.

Chem Soc Rev

January 2025

Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66, 01062 Dresden, Germany.

Nanoporous solids offer a wide range of functionalities for industrial, environmental, and energy applications. However, only a limited number of porous materials are responsive, the nanopore dynamically alters its size and shape in response to external stimuli such as temperature, pressure, light or the presence of specific molecular stimuli adsorbed inside the voids deforming the framework. Adsorption-induced structural deformation of porous solids can result in unique counterintuitive phenomena.

View Article and Find Full Text PDF

Quasi-2D perovskite made with organic spacers co-crystallized with inorganic cesium lead bromide inorganics is demonstrated for near unity photoluminescence quantum yield at room temperature. However, light emitting diodes made with quasi-2D perovskites rapidly degrade which remains a major bottleneck in this field. In this work, It is shown that the bright emission originates from finely tuned multi-component 2D nano-crystalline phases that are thermodynamically unstable.

View Article and Find Full Text PDF

Stretchable Blue Phase Liquid Crystal Lasers with Optical Stability Based on Small-Strain Nonlinear 3D Asymmetric Deformation.

Adv Mater

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!