A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation-based probabilistic substance quality index and automated geo-spatial modeling for water quality assessment. | LitMetric

Natural environments are recognized as complex heterogeneous structures thus requiring numerous multi-scale observations to yield a comprehensive description. To monitor the current state and identify negative impacts of human activity, fast and precise instruments are in urgent need. This work provides an automated approach to the assessment of spatial variability of water quality using guideline values on the example of 1526 water samples comprising 21 parameters at 448 unique locations across the New Moscow region (Russia). We apply multi-task Gaussian process regression (GPR) to model the measured water properties across the territory, considering not only the spatial but inter-parameter correlations. GPR is enhanced with a Spectral Mixture Kernel to facilitate a hyper-parameter selection and optimization. We use a 5-fold cross-validation scheme along with [Formula: see text]-score to validate the results and select the best model for simultaneous prediction of water properties across the area. Finally, we develop a novel Probabilistic Substance Quality Index (PSQI) that combines probabilistic model predictions with the regulatory standards on the example of the epidemiological rules and hygienic regulations established in Russia. Moreover, we provide an interactive map of experimental results at 100 m resolution. The proposed approach contributes significantly to the development of flexible tools in environment quality monitoring, being scalable to different standard systems, number of observation points, and region of interest. It has a strong potential for adaption to environmental and policy changes and non-unified assessment conditions, and may be integrated into support-decision systems for the rapid estimation of water quality spatial distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664848PMC
http://dx.doi.org/10.1038/s41598-021-02564-wDOI Listing

Publication Analysis

Top Keywords

water quality
12
probabilistic substance
8
substance quality
8
water properties
8
quality
6
water
6
regulation-based probabilistic
4
quality automated
4
automated geo-spatial
4
geo-spatial modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!