While aldehydes represent a classic class of electrophilic synthons, the corresponding acyl radicals are inherently nucleophilic, which exhibits umpolung reactivity. Generation of acyl radicals typically requires noble metal catalysts or excess oxidants to be added. Herein, we report a convenient and green approach to access acyl radicals, capitalizing on neutral eosin Y-enabled hydrogen atom transfer (HAT) photocatalysis with aldehydes. The generated acyl radicals underwent SOMOphilic substitutions with various functionalized sulfones (X-SOR') to deliver value-added acyl products. The merger of eosin Y photocatalysis and sulfone-based SOMOphiles provides a versatile platform for a wide array of aldehydic C-H functionalizations, including fluoromethylthiolation, arylthiolation, alkynylation, alkenylation and azidation. The present protocol features green characteristics, such as being free of metals, harmful oxidants and additives; step-economic; redox-neutral; and amenable to scale-up assisted by continuous-flow technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664905PMC
http://dx.doi.org/10.1038/s41467-021-27550-8DOI Listing

Publication Analysis

Top Keywords

acyl radicals
16
neutral eosin
8
acyl
5
divergent functionalization
4
functionalization aldehydes
4
aldehydes photocatalyzed
4
photocatalyzed neutral
4
eosin sulfone
4
sulfone reagents
4
reagents aldehydes
4

Similar Publications

Visible-light-driven metal- and photocatalyst-free cascade 1,4-HAT and dearomative spirocyclization of -benzylacrylamides are described for sustainable synthesis of a variety of pharmaceutically important γ-ketoamides and 2-Azaspiro[4.5]decanes in one pot in good to excellent yields. Readily accessible and nontoxic materials, expensive Ir or Ru photocatalyst-free mild conditions, excellent functional group tolerance, operational simplicity, and scalability enhance the practical value of this protocol.

View Article and Find Full Text PDF

Photoredox-Catalyzed Alkene Acylesterification with Acyloxime Esters via C-C and Tertiary C-O Bond Formation.

Org Lett

January 2025

School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.

We describe an efficient acyl esterification method for alkenes utilizing acyloxime esters as bifunctional reagents featuring radical acylation and congested C-O bond formation. This approach is characterized by mild photoredox conditions, high step and atom economy, a broad substrate scope, and excellent regioselectivity. A variety of valuable α-acyl hindered alcohol esters, including those obtained via gram-scale synthesis and late-stage functionalization of pharmaceutical molecules, were presented, demonstrating its synthetic potential and practicability.

View Article and Find Full Text PDF

Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.

View Article and Find Full Text PDF

Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, (), through phytochemical characterization using liquid chromatography-mass spectrometry (HPLC-MS), as well as in vitro and in silico evaluation of its biological activities (antioxidant and antimicrobial). Phytochemical characterization revealed that the ethanolic extract of (DdEx) is rich in phenolic compounds, with a total of 22 phycocompounds identified.

View Article and Find Full Text PDF

C(sp)-H Acylation of Benzo[h]quinolines at Room Temperature via Aldehyde Autoxidation and Palladium Catalysis Cooperation.

Chemistry

December 2024

School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.

Herein, we report Pd-catalyzed C(sp)-H acylation using aldehyde as acyl source and O as the green oxidant at room temperature. A selective association of acyl radical formed in-situ during aldehyde autoxidation with Pd-catalysis is the key to the process. The reaction afforded products in good yields (up to 82 %) and it is scalable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!