Nanocellulose holds considerable promise as an effective surface-enhanced Raman scattering (SERS) substrate for sensitive detection of trace targets. Flexible and high-sensitivity two-dimensional (2D) SERS substrates based on nanocrystalline cellulose (CNC) film were successfully developed via self assembly of two plasma nanoparticles: gold nanoflowers (AuNFs) and silver-coated gold nanocubes (Au@AgNCs). The loading process allows the precise control of nanoparticle distribution density and uniformity on CNC film, which are closely related to the plasma coupling effect between particles. The obtained CNC/Au@AgNC flexible two-dimensional substrate could sensitively detect pesticide residues on apple surface, and the detection limits (LOD) of dimethoate and acetamiprid were 4.1 and 10.7 μg/L, respectively. In addition, Raman signal intensity showed a good linear relationship with pesticide concentration in the range of 10-100 μg/L, which provided great potential for high sensitivity and field detection of dangerous targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.118890 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!