AI Article Synopsis

  • The study compares the enzymatic activity of a specific β-1,4-D-endoglucanase (MeCel45A) from blue mussels with other enzymes in the glycoside hydrolase family 45, focusing on their efficiency in hydrolyzing barley beta-glucan, konjac glucomannan, and carboxymethyl cellulose.
  • The crystal structure of MeCel45A is documented, revealing its unique features and performance, especially in colder temperatures where it retains high activity levels.
  • While all enzymes exhibit inverting glycoside hydrolase activity, MeCel45A and the C subfamily enzymes show mannanase activity, while subfamily A yielded glucose, showcasing distinct functionalities among these

Article Abstract

The enzymatic hydrolysis of barley beta-glucan, konjac glucomannan and carboxymethyl cellulose by a β-1,4-D-endoglucanase MeCel45A from blue mussel, Mytilus edulis, which belongs to subfamily B of glycoside hydrolase family 45 (GH45), was compared with GH45 members of subfamilies A (Humicola insolens HiCel45A), B (Trichoderma reesei TrCel45A) and C (Phanerochaete chrysosporium PcCel45A). Furthermore, the crystal structure of MeCel45A is reported. Initial rates and hydrolysis yields were determined by reducing sugar assays and product formation was characterized using NMR spectroscopy. The subfamily B and C enzymes exhibited mannanase activity, whereas the subfamily A member was uniquely able to produce monomeric glucose. All enzymes were confirmed to be inverting glycoside hydrolases. MeCel45A appears to be cold adapted by evolution, as it maintained 70% activity on cellohexaose at 4 °C relative to 30 °C, compared to 35% for TrCel45A. Both enzymes produced cellobiose and cellotetraose from cellohexaose, but TrCel45A additionally produced cellotriose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118771DOI Listing

Publication Analysis

Top Keywords

mytilus edulis
8
crystal structure
8
glucomannan beta-glucan
4
beta-glucan degradation
4
degradation mytilus
4
edulis cel45a
4
cel45a crystal
4
structure activity
4
activity comparison
4
comparison gh45
4

Similar Publications

Bivalves as a Mercury Bioindicator: A National Isotopic Survey along the Coast of South Korea.

Environ Sci Technol

January 2025

Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea.

Mercury (Hg) is a contaminant that poses health risks for human populations relying on seafood consumption. To mitigate its impact, identifying and monitoring Hg sources have become priorities, notably under the Minamata Convention. Bivalves are commonly used as sentinels in contaminant biomonitoring but can accumulate Hg from diverse environmental media.

View Article and Find Full Text PDF

Strict maternal inheritance of mitochondria is known to be the rule in animals, but over 100 species across six orders of bivalves possess doubly uniparental inheritance (DUI) of mitochondria. Under DUI, two distinctive sex-specific mitogenomes coexist. In marine and freshwater mussels, each mitogenome has an additional protein-coding gene, called female- and male-specific open reading frame or and , respectively.

View Article and Find Full Text PDF

Improving the understanding of how chemicals affect on organisms and assessing the associated environmental risks is of major interest in environmental studies. This can be achieved by using complementary approaches based on the study of the molecular responses of organisms. Because of the known chemical pressures on the environment, regulations on the content of some chemicals, such as cadmium, have been mostly completed.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (), blue mussels (), and manila clams () cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.

View Article and Find Full Text PDF

Combined effects of a pharmaceutical pollutant, gemfibrozil, and abiotic stressors (warming and air exposure) on cellular stress responses of the blue mussels Mytilus edulis.

Aquat Toxicol

January 2025

Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany. Electronic address:

Lipid-lowering drugs such as gemfibrozil (GFB) are widely used and highly biologically active, contributing to their persistence in wastewater and subsequent release into aquatic ecosystems. However, the potential impacts and toxic mechanisms of these emerging pollutants on non-target marine organisms, particularly keystone bivalves like Mytilus edulis, remain poorly understood. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of GFB (25 µg l) on oxidative, nitrosative, and dicarbonyl stress in M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!