[Research Advance of the Roles of N6-methyladenosine in the Regulation of Hematopoiesis--Review].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College National Clinical Research Center for Blood Diseases; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.E-mail:

Published: December 2021

There are more than 150 types of chemical modifications in RNA, mainly methylation, which are widely distributed in all kinds of RNA, including messenger RNA, transfer RNA, ribosomal RNA, non-coding small RNA and long non-coding RNA. In recent years, the identification of RNA methylation modification enzymes and the development of high-throughput sequencing technology at transcriptome level laid a foundation for revealing the expression and function of genes regulated by chemical modification of RNA. In this review, the most recent advances of RNA methylation, especially N6-methyladenosine (ma) in the blood system, including the regulation of RNA methyltransferases, RNA demethylases and RNA binding proteins on normal and malignant hematopoiesis through the regulation of RNA methylation level were summarized briefly.

Download full-text PDF

Source
http://dx.doi.org/10.19746/j.cnki.issn.1009-2137.2021.06.049DOI Listing

Publication Analysis

Top Keywords

rna methylation
16
rna
14
regulation rna
8
[research advance
4
advance roles
4
roles n6-methyladenosine
4
n6-methyladenosine regulation
4
regulation hematopoiesis--review]
4
hematopoiesis--review] 150
4
150 types
4

Similar Publications

Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.

View Article and Find Full Text PDF

Insights into Reproduction Through Gonadal Tissue Methylation Analysis and Transcriptomic Integration.

Biomolecules

January 2025

Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain.

Fish exhibit diverse mechanisms of sex differentiation and determination, shaped by both external and internal influences, often regulated by distinct DNA methylation patterns responding to environmental changes. In aquaculture, reproductive issues in captivity pose significant challenges, particularly the lack of fertilization capabilities in captive-bred males, hindering genetic improvement measures. This study analyzed the methylation patterns and transcriptomic profiles in gonadal tissue DNA from groups differing in rearing conditions and sexual maturity stages.

View Article and Find Full Text PDF

The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging.

View Article and Find Full Text PDF

Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior.

View Article and Find Full Text PDF

Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma.

Sci Rep

January 2025

Department of Respiratory Diseases, Qilu Hospital of Shandong University, No. 107, Culture West Road, Jinan, Shandong, China.

To integrate machine learning and multiomic data on lactylation-related genes (LRGs) for molecular typing and prognosis prediction in lung adenocarcinoma (LUAD). LRG mRNA and long non-coding RNA transcriptomes, epigenetic methylation data, and somatic mutation data from The Cancer Genome Atlas LUAD cohort were analyzed to identify lactylation cancer subtypes (CSs) using 10 multiomics ensemble clustering techniques. The findings were then validated using the GSE31210 and GSE13213 LUAD cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!