Background: Since the outbreak started in 2019, COVID-19 pandemic has a significant global impact. Due to the highly infective nature of SARS-CoV-2, the COVID-19 close contacts are at significant risk of contracting COVID-19. China's experience in successfully controlling COVID-19 emphasized the importance of managing close contacts because this strategy helps to limit potential infection sources, prevent the unconscious spread of COVID-19 and thus control this pandemic. As a result, to understand and consider the management of close contacts may be beneficial to other countries. However, managing close contacts is challenging owing to the huge number of close contacts and a lack of appropriate management tools and literature references.

Methods: A new system called the COVID-19 Close Contact Information Management System was developed. Here we introduced the design, use, improvement and achievements of this system.

Results: This system was designed from the standpoint of the Centers for Disease Control and Prevention in charge of managing close contacts. Two main functions and eight modules/themes were ultimately formed after two development stages. The system introduces what information need to be collected in the close contact management. Since the system allows information flow across cities, the geographical distance and administrative regional boundaries are no longer obstacles for managing close contacts, which promotes the management of each close contact. Moreover, when this system is used in conjunction with other data tools, it provides data assistance for understanding the COVID-19 characteristics and formulating targeted COVID-19 control policies. To date, the system has been widely used in Guangdong Province for over 1 year and has recorded tens of thousands of pieces of data. There is sufficient practical experience to suggest that the system is capable of meeting the professional work requirements for close contact management.

Conclusions: This system provides a new way to manage close contacts and restrict the spread of COVID-19 by combining information technology with disease prevention and control strategies in the realm of public health. We hope that this system will serve as an example and guide for those anticipating similar work in other countries in response to current and future public health incidents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664674PMC
http://dx.doi.org/10.1186/s12889-021-12355-7DOI Listing

Publication Analysis

Top Keywords

close contacts
32
close contact
20
managing close
16
close
13
contact management
12
management system
12
system
11
covid-19
10
covid-19 pandemic
8
covid-19 close
8

Similar Publications

Behind closed doors: Homeboundness and psychosocial outcomes. Evidence from a longitudinal study of middle-aged and older adults.

Arch Gerontol Geriatr

January 2025

Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg Center for Health Economics, Hamburg, Germany.

Objectives: To examine how homeboundness is associated with psychosocial outcomes in terms of life satisfaction, positive affect, negative affect and loneliness among middle-aged and older adults.

Methods: Longitudinal data were taken from the nationally representative sample German Ageing Survey (wave 1 to wave 4; n = 18,491 observations). This study included community-dwelling individuals aged 40 years and over in Germany.

View Article and Find Full Text PDF

You better keep an eye on your contacts.

Cell Calcium

January 2025

Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

Membrane contact sites (MCS) are specialized compartments found in all eukaryotic cells that are formed between membranes of different organelles that are in close proximity. MCS have important functions as they are sites of efficient transfer of molecules between neighboring organelles. Two recent articles have used the splitFAST system to mark and follow the dynamics of membrane contact sites and used the method to highlight the importance of MCS between the endoplasmic reticulum (ER) and lipid droplets in metabolic adaptation and MCS between the ER and mitochondria in Ca signal propagation.

View Article and Find Full Text PDF

The present study aimed to evaluate the vaccine effectiveness (VE) of different doses of an inactivated coronavirus disease 2019 (COVID-19) vaccine against Omicron BA.2.2 infection in Beijing, China, 2022.

View Article and Find Full Text PDF

Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.

Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!