Bipolar Disorder (BD), characterized by mood fluctuating between episodes of mood elevation and depression, is a leading cause of disability worldwide. Lithium continues to be prescribed as a first-line mood stabilizer for the management of BD. However, lithium has a very narrow therapeutic index and it is crucial to carefully monitor lithium plasma levels as concentrations greater than 1.2 mmol/L are potentially toxic and can be fatal. The current techniques of lithium monitoring are cumbersome and require frequent blood tests with the consequent discomfort which results in patients evading treatment. Dermal interstitial fluid (ISF), an underutilized information-rich biofluid, can be a proxy for direct blood sampling and allow lithium drug monitoring as its lithium concentration is proportional to the concentrations in blood. Therefore, in this study we seek to investigate the measurement of lithium therapeutic concentrations in artificial ISF. Our study employs a colorimetric method, based on the reaction between chromogenic agent Quinizarin and Li ion which can be detected using optical spectroscopy in the visible region (400-800 nm), to determine lithium levels in artificial ISF. The resulting spectra of our experiments show spectral variations which are related to lithium concentrations in spiked samples of artificial ISF, with a correlation coefficient (R) of 0.9. Future work will focus on investigating the feasibility of utilizing ISF for real-time and minimally-invasive lithium drug monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9630680DOI Listing

Publication Analysis

Top Keywords

artificial isf
12
lithium
11
lithium levels
8
levels artificial
8
interstitial fluid
8
bipolar disorder
8
lithium drug
8
drug monitoring
8
isf
5
optical determination
4

Similar Publications

Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis.

Nat Chem Biol

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.

View Article and Find Full Text PDF

Various hydrogels have been explored to create minimally invasive microneedles (MNs) to extract interstitial fluid (ISF). However, current methods are time-consuming and typically require 10-15 min to extract 3-5 mg of ISF. This study introduces two spiral-shaped swellable MN arrays: one made of gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA), and the other incorporating a combination of PVA, polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) for fast ISF extraction.

View Article and Find Full Text PDF

Background: Molecular profiling of estrogen receptor (ER), progesterone receptor (PR), and ERBB2 (also known as Her2) is essential for breast cancer diagnosis and treatment planning. Nevertheless, current methods rely on the qualitative interpretation of immunohistochemistry and fluorescence in situ hybridization (FISH), which can be costly, time-consuming, and inconsistent. Here we explore the clinical utility of predicting receptor status from digitized hematoxylin and eosin-stained (H&E) slides using machine learning trained and evaluated on a multi-institutional dataset.

View Article and Find Full Text PDF

High-density microneedle array-based wearable electrochemical biosensor for detection of insulin in interstitial fluid.

Biosens Bioelectron

March 2025

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria, 3168, Australia. Electronic address:

The development of point-of-care wearable devices capable of measuring insulin concentration has the potential to significantly improve diabetes management and life quality of diabetic patients. However, the lack of a suitable point-of-care device for personal use makes regular insulin level measurements challenging, in stark contrast to glucose monitoring. Herein, we report an electrochemical transdermal biosensor that utilizes a high-density polymeric microneedle array (MNA) to detect insulin in interstitial fluid (ISF).

View Article and Find Full Text PDF

Polysomnography, the gold standard diagnostic tool in sleep medicine, is performed in an artificial environment. This might alter sleep and may not accurately reflect typical sleep patterns. While macro-structures are sensitive to environmental effects, micro-structures remain more stable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!