Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Commercial prosthetic hands are frequently abandoned due to unintuitive control methods and a lack of sensory feedback from the prosthesis. Advanced neuromyoelectric prostheses can restore intuitive control and sensory feedback to prosthesis users and potentially reduce abandonment. However, not all advanced prosthetic systems are deployable for home use on portable systems with limited computational power. In this work, we use a commercially available portable neural interface processor (the Ripple Neuro Nomad), and a multi-degree-of-freedom bionic arm (the DEKA LUKE Arm) to create a closed-loop neuromyoelectric prosthesis. The system restores intuitive, independent, continuous control over the arm's six-degrees-of-freedom and provides sensory feedback for up to 288 neural and six vibrotactile channels. Additionally, the large storage capacity of the system enables high-resolution logging of EMG, hand positions, prosthesis sensors, and stimulation parameters. We developed two GUIs enabling wireless, real-time adjustments to motor control and feedback parameters: one with nearly full control over motor control and feedback parameters for investigators, and one with restricted capabilities enabling end-user safety. We verified the system's closed-loop function through a fragile egg task with vibrotactile sensory feedback. We tested the neural stimulation with an amplifier capable of eliciting transcutaneous percepts. This neuromyoelectric prosthetic system will be used for an extended take-home trial that could provide strong clinical justification for advanced, closed-loop prostheses.Clinical Relevance- This work establishes an advanced, intuitive, sensorized prosthesis that can be used in home and clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9631087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!