Peripheral nerve stimulation is a commonly used method for assisting movements after spinal cord injury, stroke, traumatic brain injury, and other types of neurological damage or dysfunction. There are many different patterns of electrical stimulation used to accomplish movement. And so, our study investigated stimulation with a wireless floating microelectrode array (WFMA) in comparison to previously reported data on functional electrical stimulation. To determine the effect on hindlimb movement, we tested a range of frequencies and pulse widths using WFMAs that were implanted in the rat sciatic nerve for 38 weeks. Frequencies between 1 and 50 Hz did not change the minimum current amplitude required to elicit movement in the hindlimb. Increasing pulse width from 57.2 to 400.4 µs decreased the minimum current required but had an associated increase in total charge applied per pulse. Overall, the WFMA provides a stable wireless peripheral nerve interface suitable for functional electrical stimulation.Clinical Relevance- This work establishes the efficacy of various stimulation parameters for controlling movement with a wireless peripheral nerve stimulator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362914PMC
http://dx.doi.org/10.1109/EMBC46164.2021.9631070DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
12
pulse width
8
rat sciatic
8
sciatic nerve
8
electrical stimulation
8
functional electrical
8
minimum current
8
wireless peripheral
8
stimulation
6
nerve
5

Similar Publications

Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.

View Article and Find Full Text PDF

Correlation Between Relative Value Units and Operative Time for Peripheral Nerve Surgeries.

Hand (N Y)

January 2025

Division of Plastic and Reconstructive Surgery, DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, FL, USA.

Background: The work relative value unit (wRVU) system quantifies surgeons' effort and resources for procedures. Studies have shown its inaccuracy in capturing the complexity of certain plastic and upper extremity surgeries. Analysis for peripheral nerve surgery (PNS), a growing niche within hand and plastic surgery, has not been performed.

View Article and Find Full Text PDF

After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.

View Article and Find Full Text PDF

Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!