Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Myoelectric prosthesis users typically do not receive immediate feedback from their device. They must be able to consistently produce distinct muscle activations in the absence of augmented feedback. In previous experiments, abstract decoding has provided real-time visual feedback for closed loop control. It is unclear if the performance in those experiments was due to short-term adaptation or motor learning. To test if similar performance could be reached without short-term adaptation, we trained participants with a delayed feedback paradigm. Feedback was delayed until after the ~1.5 s trial was completed. Three participants trained for five days in their home environments, completing a cumulative total of 4920 trials. Participants became highly accurate while receiving no real-time feedback of their control input. They were also able to retain performance gains across days. This strongly suggests that abstract decoding with delayed feedback facilitates motor learning, enabling four class control without immediate feedback.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9629609 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!