Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many rehabilitative exoskeletons use non-invasive surface electromyography (sEMG) to measure human volitional intent. However, signals from adjacent muscle groups interfere with sEMG measurements. Further, the inability to measure sEMG signals from deeply located muscles may not accurately measure the volitional intent. In this work, we combined sEMG and ultrasound (US) imaging-derived signals to improve the prediction accuracy of voluntary ankle effort. We used a multivariate linear model (MLM) that combines sEMG and US signals for ankle joint net plantarflexion (PF) moment prediction during the walking stance phase. We hypothesized that the proposed sEMG-US imaging-driven MLM would result in more accurate net PF moment prediction than sEMG-driven and US imaging-driven MLMs. Synchronous measurements including reflective makers coordinates, ground reaction forces, sEMG signals of lateral/medial gastrocnemius (LGS/MGS), and soleus (SOL) muscles, and US imaging of LGS and SOL muscles were collected from five able-bodied participants walking on a treadmill at multiple speeds. The ankle joint net PF moment benchmark was calculated based on inverse dynamics, while the net PF moment prediction was determined by the sEMG-US imaging-driven, sEMG-driven, and US imaging-driven MLMs. The findings show that the sEMG-US imaging-driven MLM can significantly improve the prediction of net PF moment during the walking stance phase at multiple speeds. Potentially, the proposed sEMG-US imaging-driven MLM can be used as a superior joint motion intent model in advanced and intelligent control strategies for rehabilitative exoskeletons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9630046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!