This paper investigates the effect of filtering (or modulating) the functional magnetic resonance imaging (fMRI) time-series on intelligence metrics predicted using dynamic functional connectivity (dFC). Thirteen brain regions that have highest correlation with intelligence are selected and their corresponding time-series are filtered. Using filtered time-series, the modified intelligence metrics are predicted. This experiment investigates whether modulating the time-series of one or two regions of the brain will increase or decrease the fluid ability and fluid intelligence among healthy humans. Two sets of experiments are performed. In the first case, each of the thirteen regions is separately filtered using four different digital filters with passbands: i) 0 - 0.25π, ii) 0.25π - 0.5π, iii) 0.5π - 0.75π, and iv) 0.75π - π, respectively. In the second case, two of the thirteen regions are filtered simultaneously using a low-pass filter of passband 0 - 0.25π. In both cases, the predicted intelligence declined for 45-65% of the subjects after filtering in comparison with the ground truths. In the first case, the low-pass filtering process had the highest predicted intelligence among the four filters. In the second case, it was noticed that the filtering of two regions simultaneously resulted in a higher prediction of intelligence for over 80% of the subjects compared to low-pass filtering of a single region.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9630981DOI Listing

Publication Analysis

Top Keywords

fmri time-series
8
fluid ability
8
ability fluid
8
intelligence
8
fluid intelligence
8
intelligence healthy
8
healthy humans
8
intelligence metrics
8
metrics predicted
8
case thirteen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!