The error-related potential (ErrP) is an event-related potential (ERP) evoked by an experimental participant's recognition of an error during task performance. ErrPs, originally described by cognitive psychologists, have been adopted for use in brain-computer interfaces (BCIs) for the detection and correction of errors, and the online refinement of decoding algorithms. Riemannian geometry-based feature extraction and classification is a new approach to BCI which shows good performance in a range of experimental paradigms, but has yet to be applied to the classification of ErrPs. Here, we describe an experiment that elicited ErrPs in seven normal participants performing a visual discrimination task. Audio feedback was provided on each trial. We used multi-channel electroencephalogram (EEG) recordings to classify ErrPs (success/failure), comparing a Riemannian geometry-based method to a traditional approach that computes time-point features. Overall, the Riemannian approach outperformed the traditional approach (78.2% versus 75.9% accuracy, p <0.05); this difference was statistically significant (p <0.05) in three of seven participants. These results indicate that the Riemannian approach better captured the features from feedback-elicited ErrPs, and may have application in BCI for error detection and correction.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9629583DOI Listing

Publication Analysis

Top Keywords

riemannian geometry-based
8
traditional approach
8
classification error-related
4
error-related potentials
4
riemannian
4
potentials riemannian
4
riemannian geometry
4
geometry error-related
4
error-related potential
4
potential errp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!