In the recent years, brain computer interfaces (BCI) using motor imagery have shown some limitations regarding the quality of control. In an effort to improve this promising technology, some studies intended to develop hybrid BCI with other technologies such as eye tracking which shows more reliability. However, the use of an eye tracker in the control of a robot might affect by itself the sense of agency (SoA) and the brain activity in the regions used for motor imagery (MI). Here, we explore the link between the sense of agency and the activity of the motor cortex. For this purpose, we used of a virtual arm projected on a surface which is either controlled by motion capture or controlled by gaze using an eye tracker. We found out that there is an activity in the motor cortex during the task of control by gaze and that having control over a projected robotic arm presents significant differences with the situation of observing the robot moving.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9630021 | DOI Listing |
As of 2023, 69% of adults and 81% of teens in the U.S. use social media.
View Article and Find Full Text PDFGBA is the major risk gene for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies with cognitive deficits. We investigated the role of mutant GBA in cognitive decline by utilizing Gba (L444P) mutant, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but lacked PD-like motor deficits or α-synuclein pathology.
View Article and Find Full Text PDFBeta-propeller Protein Associated Neurodegeneration (BPAN) is a devastating neurodevelopmental and neurodegenerative disease linked to variants in . Currently, there is no cure or disease altering treatment for this disease. This is, in part, due to a lack of insight into early phenotypes of BPAN progression and 's role in establishing and maintaining neurological function.
View Article and Find Full Text PDFUnlabelled: Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).
View Article and Find Full Text PDFJ Vis Exp
December 2024
Laboratory of Exercise Physiology, Department of Kinesiology, School of Health Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile;
The gold standard to assess the aerobic capacity in physically active subjects and athletes is the maximal oxygen consumption test (VO2-max), which involves analysis of exhaled-gases and cardiorespiratory variables obtained via the breath-by-breath method in an ergospirometer during an incremental exercise. However, this method cannot elucidate metabolic changes at the muscular level. Near-infrared spectroscopy (NIRS) has emerged as a valuable technology to evaluate local oxygen levels (Tissular Saturation Index, TSI) by quantifying the concentrations of oxygenated (O2-Hb) and deoxygenated (H-Hb) hemoglobin in the microvasculature of tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!