3D scaffolds for tissue engineering typically need to adopt a dynamic culture to foster cell distribution and survival throughout the scaffold. It is, therefore, crucial to know fluids' behavior inside the scaffold architecture, especially for complex porous ones. Here we report a comparison between simulated and measured permeability of a porous 3D scaffold, focusing on different modeling parameters. The scaffold features were extracted by microcomputed tomography (µCT) and representative volume elements were used for the computational fluid-dynamic analyses. The objective was to investigate the sensitivity of the model to the degree of detail of the µCT image and the elements of the mesh. These findings highlight the pros and cons of the modeling strategy adopted and the importance of such parameters in analyzing fluid behavior in 3D scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9629664DOI Listing

Publication Analysis

Top Keywords

porous scaffold
8
scaffold
5
effects geometry
4
geometry reconstruction
4
reconstruction estimation
4
estimation porous
4
scaffold permeability
4
permeability scaffolds
4
scaffolds tissue
4
tissue engineering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!