Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A multi-physical model of a human urinary bladder is an essential element for the potential application of electrical impedance spectroscopy during transurethral resection surgery, where measurements are taken at different fill levels inside the bladder. This work derives a multi-physical bladder tissue model that incorporates the electrical impedance properties with dependence on mechanical deformation due to filling of the bladder. The volume and ratio of the intracellular to extracellular tissue fluid heavily influence the electrical impedance characteristics and thus provide the connection between the mechanical and electrical domains. Modeling the fluid within the tissue links both the physical and histological processes and enables useful inferences of the properties from empiric observations. This is demonstrated by taking impedance measurements at different fill volumes. The resulting model provides a tool to analyze impedance measurements during surgery at different stress levels. In addition, this model can be used to determine patient-specific tissue parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9629482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!