In recent years, modeling neurons and neuronal collections with high accuracy have become central issues of neuroscience. The development of efficient algorithms for their simulation as well as the increase in computational power and parallelization need to keep up with the quantity and complexity of novel recordings and reconstructions reported by the experimental neuroscientists. The extraction of low-order equivalents that capture the essential aspects of the high-accuracy models is an essential part of the simulation process. The complexity of these models require the use of black-box data-oriented reduction approaches. We create a detailed model of the nervous system of a very known organism, C. Elegans, and show that it can be reduced using a modified data-driven model reduction method up to the order of 4 with very little loss in accuracy. The reduced model is able to predict the behaviour of the original for time ranges beyond the data used for the reduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9630241 | DOI Listing |
Chaos
January 2025
Centre for Mathematical Science, Lund University, Märkesbacken 4, 223 62 Lund, Sweden.
We investigate the dynamics of the adaptive Kuramoto model with slow adaptation in the continuum limit, N→∞. This model is distinguished by dense multistability, where multiple states coexist for the same system parameters. The underlying cause of this multistability is that some oscillators can lock at different phases or switch between locking and drifting depending on their initial conditions.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan.
Clove oil obtained from Syzygium aromaticum (L.) is traditionally employed to treat inflammation associated with rheumatism, gastric disorders, and as an analgesic. Chemo-herbal combinations are known to have potent anti-inflammatory and analgesic effects, while mitigating the drug related side effects.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.
Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Faculty of Medical Sciences, Pharmacology and Toxicology Department, University of Kragujevac, Kragujevac, Serbia.
Purposes: Intermediate-risk prostate cancer (IR PCa) is the most common risk group for localized prostate cancer. This study aimed to develop a machine learning (ML) model that utilizes biopsy predictors to estimate the probability of IR PCa and assess its performance compared to the traditional clinical model.
Methods: Between January 2017 and December 2022, patients with prostate-specific antigen (PSA) values of ≤ 20 ng/mL underwent transrectal ultrasonography-guided prostate biopsies.
Cancer Causes Control
January 2025
North Valley Breast Clinic, 1335 Buenaventura Blvd, Suite 204, Redding, CA, 96001, USA.
Objectives: Automated breast ultrasound imaging (ABUS) results in a reduction in breast cancer stage at diagnosis beyond that seen with mammographic screening in women with increased breast density or who are at a high risk of breast cancer. It is unknown if the addition of ABUS to mammography or ABUS imaging alone, in this population, is a cost-effective screening strategy.
Methods: A discrete event simulation (Monte Carlo) model was developed to assess the costs of screening, diagnostic evaluation, biopsy, and breast cancer treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!