In clinical practice, about 35% of MRI scans are enhanced with Gadolinium - based contrast agents (GBCAs) worldwide currently. Injecting GBCAs can make the lesions much more visible on contrast-enhanced scans. However, the injection of GBCAs is high-risk, time-consuming, and expensive. Utilizing a generative model such as an adversarial network (GAN) to synthesize the contrast-enhanced MRI without injection of GBCAs becomes a very promising alternative method. Due to the different features of the lesions in contrast-enhanced images while the single-scale feature extraction capabilities of the traditional GAN, we propose a new generative model that a multi-scale strategy is used in the GAN to extract different scale features of the lesions. Moreover, an attention mechanism is also added in our model to learn important features automatically from all scales for better feature aggregation. We name our proposed network with an attention-based multi-scale contrasted-enhanced-image generative adversarial network (AMCGAN). We examine our proposed AMCGAN on a private dataset from 382 ankylosing spondylitis subjects. The result shows our proposed network can achieve state-of-the-art in both visual evaluations and quantitative evaluations than traditional adversarial training.Clinical Relevance-This study provides a safe, convenient, and inexpensive tool for the clinical practices to get contrast-enhanced MRI without injection of GBCAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9630887 | DOI Listing |
Sci Rep
January 2025
School of Mechanical, Electrical, and Information Engineering, Putian University, Putian, 351100, China.
Noise label learning has attracted considerable attention owing to its ability to leverage large amounts of inexpensive and imprecise data. Sharpness aware minimization (SAM) has shown effective improvements in the generalization performance in the presence of noisy labels by introducing adversarial weight perturbations in the model parameter space. However, our experimental observations have shown that the SAM generalization bottleneck primarily stems from the difficulty of finding the correct adversarial perturbation amidst the noisy data.
View Article and Find Full Text PDFSci Rep
January 2025
NeMO Lab, ASST GOM Niguarda Cà Granda Hospital, Milan, Italy.
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that can result in a progressive loss of speech due to bulbar dysfunction, which can have significant negative impact on the patient's mental well-being. Alternative Augmentative Communication (AAC) strategies based on synthetic voices have been shown to assist patients in maintaining communication and improving their Quality of Life (QoL). However, such synthetic voices are often perceived as impersonal and fail to capture the unique voice and identity of the patient.
View Article and Find Full Text PDFPatterns (N Y)
December 2024
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
To achieve adequate trust in patient-critical medical tasks, artificial intelligence must be able to recognize instances where they cannot operate confidently. Ensemble methods are deployed to estimate uncertainty, but models in an ensemble often share the same vulnerabilities to adversarial attacks. We propose an ensemble approach based on feature decorrelation and Fourier partitioning for teaching networks diverse features, reducing the chance of perturbation-based fooling.
View Article and Find Full Text PDFInterdiscip Sci
January 2025
College of Science, Dalian Jiaotong University, Dalian, 116028, China.
Accurate prediction of drug-drug interaction (DDI) is essential to improve clinical efficacy, avoid adverse effects of drug combination therapy, and enhance drug safety. Recently researchers have developed several computer-aided methods for DDI prediction. However, these methods lack the substructural features that are critical to drug interactions and are not effective in generalizing across domains and different distribution data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science, Faculty of Computers and Informatics, Kafrelsheikh University, Kafrelsheikh, Egypt.
Missing pixel imputation is a critical task in image processing, where the presence of high percentages of missing pixels can significantly degrade the performance of downstream tasks such as image segmentation and object detection. This paper introduces a novel approach for missing pixel imputation based on Generative Adversarial Networks (GANs). We propose a new GAN architecture incorporating an identity module and a sperm motility-inspired heuristic during filtration to optimize the selection of pixels used in reconstructing missing data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!