Joint analysis of multiple biomarker images and tissue morphology is important for disease diagnosis, treatment planning and drug development. It requires cross-staining comparison among Whole Slide Images (WSIs) of immune-histochemical and hematoxylin and eosin (H&E) microscopic slides. However, automatic, and fast cross-staining alignment of enormous gigapixel WSIs at single-cell precision is challenging. In addition to morphological deformations introduced during slide preparation, there are large variations in cell appearance and tissue morphology across different staining. In this paper, we propose a two-step automatic feature-based cross-staining WSI alignment to assist localization of even tiny metastatic foci in the assessment of lymph node. Image pairs were aligned allowing for translation, rotation, and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale-invariant image transform (SIFT), followed by the fast sample consensus (FSC) protocol for finding point correspondences and finally aligned the images. The Registration results were evaluated using both visual and quantitative criteria using the Jaccard index. The average Jaccard similarity index of the results produced by the proposed system is 0.942 when compared with the manual registration.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9629970DOI Listing

Publication Analysis

Top Keywords

slide images
8
tissue morphology
8
images
5
automatic multi-stain
4
registration
4
multi-stain registration
4
registration slide
4
images histopathology
4
histopathology joint
4
joint analysis
4

Similar Publications

Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E)-stained pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained whole slide images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts.

View Article and Find Full Text PDF

Automated scoring to assess RAD51-mediated homologous recombination in ovarian patient-derived tumor organoids.

Lab Invest

January 2025

Université de Caen Normandie, INSERM U1086 ANTICIPE, Caen, France; UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France; Université de Caen Normandie, US PLATON- ORGAPRED core facility, Caen, France; Université de Caen Normandie, US PLATON, UNICANCER, Comprehensive Cancer Center François Baclesse- Biological Resource Center 'OvaRessources', Caen, France. Electronic address:

PARP inhibitors (PARPi) have been shown to improve progression-free survival, particularly in homologous recombination deficient (HRD) ovarian cancers. Identifying patients eligible to PARPi is currently based on next-generation sequencing (NGS), but the persistence of genomic scars in tumors after restoration of HR or epigenetic changes can be a limitation. Functional assays could thus be used to improve this profiling and faithfully identify HRD tumors.

View Article and Find Full Text PDF

Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.

View Article and Find Full Text PDF

A Microfluidic-Based Cell-Stretching Culture Device That Allows for Easy Preparation of Slides for Observation with High-Magnification Objective Lenses.

Micromachines (Basel)

January 2025

Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan.

Microfluidic-based cell-stretching devices are vital for studying the molecular pathways involved in cellular responses to mechanobiological processes. Accurate evaluation of these responses requires detailed observation of cells cultured in this cell-stretching device. This study aimed to develop a method for preparing microscope slides to enable high-magnification imaging of cells in these devices.

View Article and Find Full Text PDF

Background: Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. The median overall survival time for patients who develop metastasis is approximately one year. In this study, we aim to leverage deep learning (DL) techniques to analyze digital cytopathology images and directly predict the 48 month survival status on a patient level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!