Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Annu Int Conf IEEE Eng Med Biol Soc
Published: November 2021
In the case of vector flow imaging systems, the most employed flow estimation techniques are the directional beamforming based cross correlation and the triangulation-based autocorrelation. However, the directional beamforming-based techniques require an additional angle estimator and are not reliable if the flow angle is not constant throughout the region of interest. On the other hand, estimates with triangulation-based techniques are prone to large bias and variance at low imaging depths due to limited angle for left and right apertures. In view of this, a novel angle independent depth aware fusion beamforming approach is proposed and evaluated in this paper. The hypothesis behind the proposed approach is that the peripheral flows are transverse in nature, where directional beamforming can be employed without the need of an angle estimator and the deeper flows being non-transverse and directional, triangulation-based vector flow imaging can be employed. In the simulation study, an overall 67.62% and 74.71% reduction in magnitude bias along with a slight reduction in the standard deviation are observed with the proposed fusion beamforming approach when compared to triangulation-based beamforming and directional beamforming, respectively, when implemented individually. The efficacy of the proposed approach is demonstrated with in-vivo experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9630742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.