Thyroid cancer has a high prevalence all over the world. Accurate thyroid nodule diagnosis can lead to effective treatment and decrease the mortality rate. Ultrasound imaging is a safe, portable, and inexpensive tool for thyroid nodule monitoring. However, the widespread use of ultrasound has also resulted in over-diagnosis and over-treatment of nodules. There is also large variability in the assessment and characterization of nodules. Thyroid nodule classification requires precise delineation of the nodule boundary which is tedious and time- consuming. Automatic segmentation of nodule boundaries is highly desirable, however, it is challenging due to the wide range of nodule appearances, shapes, and sizes. In this study, we propose an end-to-end pipeline for nodule segmentation and classification. A residual dilated UNet (resDUnet) model is proposed for nodule segmentation. The output of resDUnet is fed to two rule-based classifiers to categorize the composition and echogenicity of the segmented nodule. We evaluate our segmentation method on a large dataset of 352 ultrasound images reviewed by a certified radiologist. When compared with ground-truth, resDUnet gives a higher Dice score than the standard UNet (82% vs. 81%). Our method requires minimal user interaction and it is robust to reasonable variations in the user-specified region-of-interest. We expect the proposed method to reduce variability in thyroid nodule assessment which results in more efficient and cost-effective monitoring of thyroid cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9629557DOI Listing

Publication Analysis

Top Keywords

thyroid nodule
20
nodule segmentation
12
nodule
10
segmentation classification
8
rule-based classifiers
8
thyroid cancer
8
thyroid
7
segmentation
5
classification deep
4
deep convolutional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!