A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Asymmetric Three-dimensional Convolutions For Preterm Infants' Pose Estimation. | LitMetric

Computer-assisted tools for preterm infants' movement monitoring in neonatal intensive care unit (NICU) could support clinicians in highlighting preterm-birth complications. With such a view, in this work we propose a deep-learning framework for preterm infants' pose estimation from depth videos acquired in the actual clinical practice. The pipeline consists of two consecutive convolutional neural networks (CNNs). The first CNN (inherited from our previous work) acts to roughly predict joints and joint-connections position, while the second CNN (Asy-regression CNN) refines such predictions to trace the limb pose. Asy-regression relies on asymmetric convolutions to temporally optimize both the training and predictions phase. Compared to its counterpart without asymmetric convolutions, Asy-regression experiences a reduction in training and prediction time of 66% , while keeping the root mean square error, computed against manual pose annotation, merely unchanged. Research mostly works to develop highly accurate models, few efforts have been invested to make the training and deployment of such models time-effective. With a view to make these monitoring technologies sustainable, here we focused on the second aspect and addressed the problem of designing a framework as trade-off between reliability and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9630216DOI Listing

Publication Analysis

Top Keywords

preterm infants'
12
infants' pose
8
pose estimation
8
asymmetric convolutions
8
asymmetric three-dimensional
4
three-dimensional convolutions
4
convolutions preterm
4
pose
4
estimation computer-assisted
4
computer-assisted tools
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!