The low number of annotated training images and class imbalance in the field of machine learning is a common problem that is faced in many applications. With this paper, we focus on a clinical dataset where cells were extracted in a previous research. Class imbalance can be experienced within this dataset since the normal cells are in a great majority in contrast to the abnormal ones. To address both problems, we present our idea of synthetic image generation using a custom variational autoencoder, that also enables the pretraining of the subsequent classifier network. Our method is compared with a performant solution, as well as presented with different modifications. We have experienced a performance increase of 4.52% regarding the classification of the abnormal cells.Clinical Relevance - We extract images from cervical smears, using digitized Pap test. When working with these kinds of smears, a single one can contain more than 10,000 cells. Examination of these is done manually by going over each cell individually. Our main goal is to make a system that can rank these samples by importance, thus making the process easier and more effective. The research that is described in this paper gets us a step closer to achieving our goal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9631065 | DOI Listing |
NPJ Syst Biol Appl
January 2025
Center for Interdisciplinary Digital Sciences (CIDS), Department Information Services and High-Performance Computing (ZIH), Dresden University of Technology, 01062, Dresden, Germany.
Predicting the biological behavior and time to recurrence (TTR) of high-grade diffuse gliomas (HGG) after maximum safe neurosurgical resection and combined radiation and chemotherapy plays a pivotal role in planning clinical follow-up, selecting potentially necessary second-line treatment and improving the quality of life for patients diagnosed with a malignant brain tumor. The current standard-of-care (SoC) for HGG includes follow-up neuroradiological imaging to detect recurrence as early as possible and relies on several clinical, neuropathological, and radiological prognostic factors, which have limited accuracy in predicting TTR. In this study, using an in-silico analysis, we aim to improve predictive power for TTR by considering the role of (i) prognostically relevant information available through diagnostics used in the current SoC, (ii) advanced image-based information not currently part of the standard diagnostic workup, such as tumor-normal tissue interface (edge) features and quantitative data specific to biopsy positions within the tumor, and (iii) information on tumor-associated macrophages.
View Article and Find Full Text PDFPharm Res
January 2025
Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.
Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.
Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.
Biol Imaging
November 2024
Institut de Recherche en Informatique de Toulouse (IRIT), CNRS & Université de Toulouse, Toulouse, France.
We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
Herein, we report a nanoscale composite COF material loaded with copper peroxide (CuO) and nitric oxide (NO) prodrug a stepwise post-synthetic modification. The obtained CuO2@COF-SNO can undergo a cascade reaction in the tumor microenvironment to generate reactive oxygen and nitrogen species (ROS/RNS) to enhance chemodynamic therapy of the tumor.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, AAA-3112, Nashville, Tennessee, 37232-2102, UNITED STATES.
Objective: A new nuclear Overhauser enhancement (NOE)-mediated saturation transfer MRI signal at -1.6 ppm, potentially from choline phospholipids and termed NOE(-1.6), has been reported in biological tissues at high magnetic fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!