Artifacts and defects in Cone-beam Computed Tomography (CBCT) images are a problem in radiotherapy and surgical procedures. Unsupervised learning-based image translation techniques have been studied to improve the image quality of head and neck CBCT images, but there have been few studies on improving the image quality of abdominal CBCT images, which are strongly affected by organ deformation due to posture and breathing. In this study, we propose a method for improving the image quality of abdominal CBCT images by translating the numerical values to the values of corresponding paired CT images using an unsupervised CycleGAN framework. This method preserves anatomical structure through adversarial learning that translates voxel values according to corresponding regions between CBCT and CT images of the same case. The image translation model was trained on 68 CT-CBCT datasets and then applied to 8 test datasets, and the effectiveness of the proposed method for improving the image quality of CBCT images was confirmed.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9629952DOI Listing

Publication Analysis

Top Keywords

cbct images
24
image quality
20
improving image
12
images
8
image translation
8
quality abdominal
8
abdominal cbct
8
method improving
8
values corresponding
8
cbct
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!