Since the COVID-19 pandemic began, research has shown promises in building COVID-19 screening tools using cough recordings as a convenient and inexpensive alternative to current testing techniques. In this paper, we present a novel and fully automated algorithm framework for cough extraction and COVID-19 detection using a combination of signal processing and machine learning techniques. It involves extracting cough episodes from audios of a diverse real-world noisy conditions and then screening for the COVID-19 infection based on the cough characteristics. The proposed algorithm was developed and evaluated using self-recorded cough audios collected from COVID-19 patients monitored by Biovitals Sentinel remote patient management platform and publicly available datasets of various sound recordings. The proposed algorithm achieves a duration Area Under Receiver Operating Characteristic curve (AUROC) of 98.6% in the cough extraction task and a mean cross-validation AUROC of 98.1% in the COVID-19 classification task. These results demonstrate high accuracy and robustness of the proposed algorithm as a fast and easily accessible COVID-19 screening tool and its potential to be used for other cough analysis applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9630722DOI Listing

Publication Analysis

Top Keywords

covid-19 screening
12
proposed algorithm
12
cough
8
cough recordings
8
cough extraction
8
covid-19
7
novel covid-19
4
screening
4
screening cough
4
recordings mobile
4

Similar Publications

This bibliometric analysis aimed to define important topics and developments across wide awake local anaesthesia no tourniquet (WALANT) hand surgery, an innovative ambulatory technique that gained popularity during the COVID-19 pandemic. Articles were searched and screened using the Web of Science core collection database. VOSviewer 1.

View Article and Find Full Text PDF

Background: The negative impact of COVID-19 pandemic on healthcare service utilization has been reported in several countries. In Gabon, data on the preparedness for future pandemic are lacking. The aim of the present study was to assess the trends of hospital attendance, malaria and self-medication prevalences as well as ITN use before and during Covid-19 first epidemic waves in a paediatric wards of a sentinel site for malaria surveillance, in Libreville, Gabon.

View Article and Find Full Text PDF

Nanolabels for biosensors based on lateral flow immunoassays.

Anal Chim Acta

February 2025

Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain. Electronic address:

The COVID-19 outbreak was an important turning point in the development of a new generation of biosensing technologies. The synergistic combination of an immunochromatographic test (lateral flow immunoassays, LFIA) and signal transducers provides enhanced sensitivity and the ability to quantify in the rapid tests. This is possible due to the variety of nanoparticles that can be used as reporter labels.

View Article and Find Full Text PDF

Topologically constrained DNA-mediated one-pot CRISPR assay for rapid detection of viral RNA with single nucleotide resolution.

EBioMedicine

January 2025

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, New Cornerstone Science Foundation, Beijing, 100084, China. Electronic address:

Background: The widespread and evolution of RNA viruses, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the importance of fast identification of virus subtypes, particularly in non-laboratory settings. Rapid and inexpensive at-home testing of viral nucleic acids with single-base resolution remains a challenge.

Methods: Topologically constrained DNA ring is engineered as substrates for the trans-cleavage of Cas13a to yield an accelerated post isothermal amplification.

View Article and Find Full Text PDF

Human Metapneumovirus (HMPV) is a re-emerging respiratory pathogen causing significant morbidity and mortality, particularly among young children, the elderly, and immunocompromised individuals. First identified in 2001, HMPV has since been recognised as a leading cause of acute respiratory tract infections (ARTIs) worldwide. Its transmission occurs through droplets, direct contact, and surface contamination, with crowded spaces and healthcare facilities serving as key environmental amplifiers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!