AI Article Synopsis

  • COVID-19 has significantly impacted the world, particularly in the U.S., which has the highest number of cases and where patients with acute respiratory distress syndrome (ARDS) face severe health risks.
  • Research methods for assessing COVID-19 and ARDS typically rely on clinical settings and symptoms, which can be ineffective, whereas vital signs like heart rate and blood pressure show potential for early detection of respiratory diseases.
  • This study utilizes vital signs from a large sample of ARDS patients to develop a deep learning model that accurately distinguishes between COVID-19 infected and non-infected individuals, suggesting that everyday vital sign monitoring could allow for early identification of the virus outside of clinical environments.

Article Abstract

The world has been affected by COVID-19 coronavirus. At the time of this study, the number of infected people in the United States is the highest globally (31.2 million infections). Within the infected population, patients diagnosed with acute respiratory distress syndrome (ARDS) are in more life-threatening circumstances, resulting in severe respiratory system failure. Various studies have investigated the infections to COVID-19 and ARDS by monitoring laboratory metrics and symptoms. Unfortunately, these methods are merely limited to clinical settings, and symptom-based methods are shown to be ineffective. In contrast, vital signs (e.g., heart rate) have been utilized to early-detect different respiratory diseases in ubiquitous health monitoring. We posit that such biomarkers are informative in identifying ARDS patients infected with COVID-19. In this study, we investigate the behavior of COVID-19 on ARDS patients by utilizing simple vital signs. We analyze the long-term daily logs of blood pressure (BP) and heart rate (HR) associated with 150 ARDS patients admitted to five University of California academic health centers (containing 77,972 samples for each vital sign) to distinguish subjects with COVID-19 positive and negative test results. In addition to the statistical analysis, we develop a deep neural network model to extract features from the longitudinal data. Our deep learning model is able to achieve 0.81 area under the curve (AUC) to classify the vital signs of ARDS patients infected with COVID-19 versus other ARDS diagnosed patients. Since our proposed model uses only the BP and HR, it would be possible to review data prior to the first reported cases in the U.S. to validate the presence or absence of COVID-19 in our communities prior to January 2020. In addition, by utilizing wearable devices, and monitoring vital signs of subjects in everyday settings it is possible to early-detect COVID-19 without visiting a hospital or a care site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009359PMC
http://dx.doi.org/10.1109/EMBC46164.2021.9629794DOI Listing

Publication Analysis

Top Keywords

vital signs
16
ards patients
16
heart rate
12
blood pressure
8
ards
8
covid-19
8
covid-19 ards
8
patients infected
8
infected covid-19
8
patients
7

Similar Publications

Blood Flow Restricted Resistance Exercise in Well-Trained Men: Salivary Biomarker Responses and Oxygen Saturation Kinetics.

J Strength Cond Res

December 2024

Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas.

Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men.

View Article and Find Full Text PDF

Small Interfering RNA Therapy for the Management and Prevention of Hypertension.

Curr Hypertens Rep

January 2025

Department of Pharmacy, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, China.

Purpose Of Review: To review currently existing knowledge on a new type of antihypertensive treatment, small interfering RNA (siRNA) targeting hepatic angiotensinogen.

Recent Findings: Targeting angiotensinogen synthesis in the liver with siRNA allows reaching a suppression of renin-angiotensin system (RAS) activity for up to 6 months after 1 injection. This might revolutionize antihypertensive treatment, as it could overcome non-adherence, the major reason for inadequate blood pressure control.

View Article and Find Full Text PDF

PURPOSE OF REVIEW: Narrative review of the author's main contributions to the field of cardiovascular health spanning four decades, with a focus on findings related to 1- the pathophysiology of obesity, insulin resistance, type 2 diabetes and cardiovascular disease, and 2- the management/prevention of these conditions. Particular attention is given to the importance of regular physical activity. RECENT FINDINGS: Because behaviors and their physiological consequences are still not measured in clinical practice, it is proposed to systematically assess and target "lifestyle vital signs" (waist circumference, cardiorespiratory fitness, food-based diet quality and level of leisure-time physical activity) in primary care.

View Article and Find Full Text PDF

Procedural sedative effect of remimazolam in ICU patients on invasive mechanical ventilation: a randomised, prospective study.

Ann Intensive Care

January 2025

Department of Intensive Care Unit, Yanbian University Hospital, No. 1327, Juzi Street, Xinxing Street, Yanji, 136200, Jilin, China.

Background: Invasive procedures and environmental factors in the intensive care unit (ICU) may cause anxiety and discomfort in patients, who often require sedation therapy. The aim of this study was to assess the safety of remimazolam tosilate for procedural sedation in ICU patients receiving mechanical ventilation following endotracheal intubation. Eighty patients from a single centre were randomly assigned to either the propofol group or the remimazolam group.

View Article and Find Full Text PDF

Arterial compliance (AC) is an important cardiovascular parameter characterizing mechanical properties of arteries. AC is significantly influenced by arterial wall structure and vasomotion, and it markedly influences cardiac load. A new method, based on a two-element Windkessel model, has been recently proposed for estimating AC as the ratio of the time constant T of the diastolic blood pressure decay and peripheral vascular resistance derived from clinically available stroke volume measurements and selected peripheral blood pressure parameters which are less prone to peripheral distortions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!