Fine needle aspiration cytology requires accurate needle insertion into a tumor and sufficient amount collection of samples, which highly depends on the skill of the physician. The advantage of the diagnosis is to minimize the tissue damage with the fine needle, while, when the amount of the sample sucked from the lesion is not enough for the definite diagnosis, the procedure has to be repeated until satisfying them. Although numerous research reported a robot-assisted insertion method to improve the accuracy of needle placement with fine needles, there was less research to address the efficient tissue collection. Ideally, the amount of the samples can be satisfied for the diagnosis even if an extra-fine needle (e.g. 25-gauge) is used. This paper proposes a novel needle insertion method for increasing the amount of the tissue sample with the extra-fine needle. The proposed insertion method comprises the round-trip insertion motion and trajectory rerouting with the nature of the bevel-tipped needle. The phantom study's result showed the equivalency of the aspiration amount between a physician's manual procedure with a 22-gauge needle and the proposed method with a 25-gauge needle (4.5 ± 1.0 mg vs 5.1 ± 0.7 mg). The results suggested that the proposed robotic aspiration method can increase the sampling amount with the extra-fine needle in the fine needle aspiration cytology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC46164.2021.9629674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!