A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wavelet based event detection in the phonocardiogram of prolapsed mitral valve. | LitMetric

AI Article Synopsis

  • Mitral valve prolapse (MVP) affects about 2% of the population and is characterized by the stretching of the mitral valve leaflets, often identified through specific sounds during a medical examination.
  • The diagnosis typically requires an echocardiogram, but in this study, researchers proposed a method to use phonocardiograms (PCG) to automate the detection of MVP patterns and monitor its progression using advanced signal processing techniques.
  • An innovative convolutional neural network (CNN) trained on scalogram images derived from the systolic phase showcased nearly 100% accuracy in identifying MVP, suggesting it could enhance quick screening for patients.

Article Abstract

Mitral valve prolapse (MVP) is one of the cardiovascular valve abnormalities that occurs due to the stretching of mitral valve leaflets, which develops in around 2 percent of the population. MVP is usually detected via auscultation and diagnosed with an echocardiogram, which is an expensive procedure. The characteristic auscultatory finding in MVP is a mid-to-late systolic click which is usually followed by a high-pitched systolic murmur. These can be easily detected on a phonocardiogram which is a graphical representation of the auscultatory signal. In this paper, we have proposed a method to automatically identify patterns in the PCG that can help in diagnosing MVP as well as monitor its progression into Mitral Regurgitation. In the proposed methodology the systolic part, which is the region of interest here, is isolated by preprocessing and thresholded Teager-Kaiser energy envelope of the signal. Scalogram images of the systole part are obtained by applying continuous wavelet transform. These scalograms are used to train the convolutional neural network (CNN). A two-layer CNN could identify the event patterns with nearly 100% accuracy on the test dataset with varying sizes (20% - 40% of the entire data). The proposed method shows potential in the quick screening of MVP patients.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9629864DOI Listing

Publication Analysis

Top Keywords

mitral valve
12
proposed method
8
mvp
5
wavelet based
4
based event
4
event detection
4
detection phonocardiogram
4
phonocardiogram prolapsed
4
mitral
4
prolapsed mitral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!