Osteoporosis is a metabolic osteopathy syndrome, and the incidence of osteoporosis increases significantly with age. Currently, bone quantitative ultrasound (QUS) has been considered as a potential method for screening and diagnosing osteoporosis. However, its diagnostic accuracy is quite low. By contrast, deep learning based methods have shown the great power for extracting the most discriminative features from complex data. To improve the osteoporosis diagnostic accuracy and take advantages of QUS, we devise a deep learning method based on ultrasound radio frequency (RF) signal. Specifically, we construct a multi-channel convolutional neural network (MCNN) combined with a sliding window scheme, which can enhance the number of data as well. By using speed of sound (SOS), the quantitative experimental results of our preliminary study indicate that our proposed osteoporosis diagnosis method outperforms the conventional ultrasound methods, which may assist the clinician for osteoporosis screening.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC46164.2021.9629546DOI Listing

Publication Analysis

Top Keywords

osteoporosis diagnosis
8
based ultrasound
8
ultrasound radio
8
radio frequency
8
frequency signal
8
multi-channel convolutional
8
convolutional neural
8
neural network
8
osteoporosis diagnostic
8
diagnostic accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!